[t mESHFR::

Simulate with complex geometries and complex physics

© 2020 Fraunhofer Institute for Industrial Mathematics ITWM

Document created: November 03, 2020

OUTLINE

MESHFREE

1. InstallationGuide
1.1. Execute
1.2. NamingSchemeExecutables
1.3. ParaViewTipsAndTricks

2. GettingStarted
2.1. Introduction___ GettingStarted__
2.2. LetterCases
2.3. SpecialCases
2.4. Tutorial

3. InputFiles
3.1. USER_common_variables
3.2. common_variables

4. Indices
4.1. DROPLETPHASE__indices_
4.2. GASDYN___ indices
4.3. General___indices___
4.4.LIQUID___indices___
4.5. MANIFOLD___indices___
4.6. POPBAL___indices___
4.7. SHALLOWWATER___indices___
4.8. TRANSPORT___indices___
4.9. UserDefinedIndices

5. Constants

6. RunTimeTools
6.1. ComputationalSteering
6.2. TIMECHECK

7. Solvers
7.1. Geometry
7.2. Numerics

8. Download

9. PerformanceOptimization

9.1. GeometryOperations
10. Support
11. Releases

https://www.meshfree.eu
https://www.meshfree.eu
http://www.itwm.fraunhofer.de

MESHFREE

MESHFREE

Online Documentation for MESHFREE

General information

The original method is called Finite Pointset Method (FPM) and is an originary development of the Fraunhofer Institute for
Industrial Mathematics ITWM . The software MESHFREE couples FPM and the algebraic multigrid method implemented in
SAMG , an originary development of the Fraunhofer Institute for Algorithms and Scientific Computing SCAI .

FPM is the deprecated name of the numerical simulation idea, publications of which can be found for example in
https://www.meshfree.eu/en/publications.html . Now and the in future, we prefer the name Generalized Finite Difference
Method (GFDM), as this states exactly the character of the method and avoids confusion with other ideas, also
abbreviated as FPM.

Note that FPM is still the name of several commercial software-instances outside of ITWM, putting the original FPM-ideas
into practice.

How to use MESHFREE
« InstallationGuide : install the software
GettingStarted : first steps with MESHFREE
o Releases : stay up-to-date with new/current developments
InputFiles : quick reference to all items and functionalities provided to the user
Indices and __ Constants__ : quick reference to all predefined variables and constants
« RunTimeTools : communication with a running simulation, performance measurements
« Solvers : underlying mathematical and numerical models

Highlights

Useful insight into PerformanceOptimization concerning geometry operations.

List of members:

_ Constants___ typical %...%-constants that can be used in the input files

Download Download executables, documentation and examples

GettingStarted first steps with MESHFREE

Indices MESHFREE indices for simulation entities

InputFiles Input files used for steering MESHFREE

InstallationGuide Installation of MESHFREE

PerformanceOptimization useful insight into performance optimization

Releases Information on the MESHFREE releases

RunTimeTools tools regarding the run time

Solvers Overview of numerical and geometrical algorithms used in MESHFREE

Support How to contact the Support Team

https://www.itwm.fraunhofer.de/en/departments/tv/grid-free-methods.html
https://www.itwm.fraunhofer.de/en.html
https://www.scai.fraunhofer.de/en/products/software-samg.html
https://www.scai.fraunhofer.de/en.html
https://www.meshfree.eu/en/publications.html

MESHFREE - InstallationGuide

1. InstallationGuide

Installation of MESHFREE

We recommend the usage of a Linux-based system (real or virtual machine). Supported operating systems are

« rhel7: Red Hat Enterprise Linux 7
« centos6: CentOS 6 (equivalent to Red Hat Enterprise Linux 6)

Download
Downloadan appropriate stable-version ofM ESHFR E Efrom

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Executables/MESHFREE/stable or download an appropriate beta-
version of MESHFREE from https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/ExecutablessMESHFREE/beta .

Details on the folder structure and the naming scheme can be found here: NamingSchemeExecutables .

The newest developments can be obtained in the beta-versions, however they might not be completely stable towards all
aspects of the software. beta-versions are tested only on a limited set of test problems. They are created once per two
months. The stable versions are tested on an extended set of reference problems, however they are created only twice per
year. For details on the release cycle, see Releases .

Download always the newest version (the older ones are there for reference only). If it is unclear which category of
executables to download from, contact our Support team for assistance.

Installation

« Unpack the archive containing MESHFREE into your preferred installation folder. For this, open a shell and execute
the following commands.

cd /path/to/download/ArchiveName.tar.gz

mkdir -p /path/to/meshfree/installation/folder

tar -x -f ArchiveName.tar.gz -C /path/to/meshfree/installation/folder
cd /path/to/meshfree/installation/folder

« Follow the installation steps described in the contained README.ixt file.

Note: For installation and subsequent execution we assume a bash-shell or similar. If working on a c-shell, especially the
export commands will have to be replaced by setenv and the appropriate syntax.

If you encounter any problems, please contact our Support team.

Execution

After successful installation, first time users are advised to continue with GettingStarted .
Experienced users can procede as follows: Execute .

Analysis

For postprocessing, the simulation results (MESHFREE point cloud as well as geometry elements) can be saved. To view
and analyze the results, we recommend to download and install ParaView (see ParaViewTipsAndTricks). Details on the
available file formats and their usage can be found here: SAVE .

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Executables/MESHFREE/stable
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Executables/MESHFREE/beta

Furthermore, integrated simulation results can be saved in tabular form, see INTEGRATION for details. This data can be
analyzed, e.g. with the help of GNU Octave.

List of members:

Execute running MESHFREE

NamingSchemeExecutables naming scheme of the MESHFREE executables

ParaViewTipsAndTricks tips and tricks for postprocessing MESHFREE results with ParaView
MESHFREE - InstallationGuide - Execute

1.1. Execute

running MESHFREE

We presume that MESHFREE has been installed as described in InstallationGuide . In order to run MESHFREE , open a
shell, go into your project directory (including the InputFiles and geometry data) and execute the run script:

cd /path/to/my/project

/path/to/meshfree/installation/folder/meshfree_run.sh # serial

/path/to/meshfree/installation/folder/meshfree_run.sh N # on N MPI processes
/path/to/meshfree/installation/folder/meshfree_run.sh N M # on N MPI processes, each with M openMP threads
/path/to/meshfree/installation/folder/meshfree_run.sh N M [other parameters] # for other command line options, see
documentation

The first (optional) parameter is taken as the number of MPI processes (default 1), provided the executable supports MPI.
The second (optional) parameter is taken as the number of openMP threads (default 1), provided the executable supports
openMP. For information on which MESHFREE versions support MPI or openMP, see NamingSchemeExecutables . Any
further parameters are passed on to the MESHFREE call, see CommandLine .

If working on a Linux cluster (running on more than one compute nodes), make sure that there exists a valid nodefile
(listing your compute resources). Please ensure furthermore, that the full name of the nodefile is held by the environment
variable $PBS_NODEFILE .

We recommend setting an alias by adding the following line to your ~/.bashrc

alias meshfree="/full/path/to/meshfree/installation/folder/meshfree_run.sh’

Then the above commands are shortened to

cd /path/to/my/project

meshfree # serial

meshfree N # on N MPI processes

meshfree N M # on N MPI processes, each with M openMP threads

meshfree N M [other parameters] # for other command line options, see documentation
List of members:

CommandLine Command line options for MESHFREE

EnvironmentVariables Environment variables for MESHFREE

MESHFREE - InstallationGuide - Execute - Commandline

1.1.1. CommandLine

Command line options for MESHFREE

MESHFREE supports several command line parameters and respects a few environment variables.

-nt {number of threads} Specifies the number of OpenMP threads. This does not have an effect for the pure
--num-threads {number of threads} MPI version of MESHFREE .

-e {/path/prefix/} This will run MESHREE inside /path/prefix/ as if it had been started directly there.
--exec-dir {/path/prefix/}

This will prepend /path/prefix/ to every SAVE_path . It makes most sense when

-r {/path/prefix/} using relative paths and terminating the prefix with a slash. Also see
--result-dir {/path/prefix/} EnvironmentVariables .
-wf {file name} Specify a file name for the warnings file.

--warning-file {file name}

Specify a general purpose parameter string. Use this via @CLPARAM@ in

~Clp {parameter string} USER_common_variables.dat

--clparam {parameter string}

Let MESHFREE kil itself after termination. Under certain circumstances
-k MESHFREE might hang upon exit when used with MPI. In these cases killing it will
--kill release the resources immediately.

Will encrypt all the given files into filename.enc and use it as described in
Encryption . Can be added to -enc to specify the amount of time the days the
encrypted file is valid

-enc {filenames}
--encrypt {filenames}
--expiry-date {days}

MESHFREE.x -enc USER_common_variables.dat --expiry-date 10 will encrypt the
USER_common_variables.dat into USER_common_variables.dat.enc and will be

For example: valid for 10 days

execute MESHFREE in step-by-step execution modus from the beginning of the
--executeStepByStep program. See step-by-step-execution for details. This might help debugging cases
-step with complex geometry items.

Define the process identification number as an integer value. If this option is not
given, MESHFREE will assign the ID as the computers clock time at program

~IFPM_process_ID startup in seconds. The process ID is part of the names for SIGNAL- and log-files.

-lcs Check for a valid license and exit.
--check-license

. Print version number and exit.
--version

Additionally, there are two positional command line options. The first unknown option will be interpreted as the name of the
USER_common_variables file and the second as the file name of the common_variables file. The position within the above
options can be arbitrary.

List of members:

Encryption Encrypts files to share UCVs and CVs MESHFREE can work with but cannot be read by a human

MESHFREE - InstallationGuide - Execute - CommandLine - Encryption

Encryption
Encrypts files to share UCVs and CVs MESHFREE can work with but cannot be read by a human

To encrypt files please check the CommandLine section

If MESHFREE cannot find the given UCVs and/or CVs MESHFREE will automatically search for the give name with the
appendix ".enc'

For example if no specific CV and UCV name was given the two files MESHFREE looks for are common_variables.dat and
USER_common_variables.dat

If one of those is not found MESHFREE looks for common_variables.dat.enc and USER_common_variable.dat.enc
If those encrypted files are not found either MESHFREE will exit with an error message.

It is currently not possible to \include_Ucv{} an encrypted file into an encrypted file.

It is possible to include multiple encrypted files into an unecrypted file via \include_Ucv{}
Note: the name of the file need to be without the .enc, generally you should never specify
the .enc ending into any of your parameters as those will be automatically found once
there is no file found with the original name.

MESHFREE - InstallationGuide - Execute - EnvironmentVariables

1.1.2. EnvironmentVariables

Environment variables for MESHFREE

o FPM_LICENSE_FILE is the most important environment variable as it sets
the path to the license file. It must include the full path including
the file name. It is not sufficient to just point it to the directory
where the license file is located.
« OMP_NUM_THREADS is a default environment variable for OpenMP. It defines
the number of OpenMP threads to be used if specified. However, the
command line option -nt will override this environment variable if provided.
« FPM_RESULTDIR_PREFIX specifies a prefix to be prepended to every SAVE_path .
This environment variable will be overriden by the -r command line option.

MESHFREE - InstallationGuide - NamingSchemeExecutables

1.2. NamingSchemeExecutables

naming scheme of the MESHFREE executables

Structure

The folder structure on https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Executables/MESHFREE/ is as follows:

« stable vs beta versions
« release vs debug versions

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Executables/MESHFREE/

« operating systems

o rhel7: Red Hat Enterprise Linux 7

o centos6: CentOS 6 (equivalent to Red Hat Enterprise Linux 6)
- different versions

Naming

Naming scheme for executable/installation archive:

« meshfree
« optional marker d if debug version
version, e.g. R2018.1.0 for stable version, beta2020.01.0 for beta version, see Releases
included SAMG version, e.g. SAMG18.05.00
optional marker o if SAMG includes openMP parallelisation
- type of executable

o mpi: MPI parallelisation (incl. MP| shared memory)

o mpin: MPI parallelisation, NO MPI shared memory

o omp: openMP parallelisation

o ompi: MPI and openMP parallelisation (without MPI shared memory)

</p>

precision, so far only d=double, but s=single, g=quad also possible
operating system (see above)
architecture: x86 = 32 bit, x64 = (64 bit arch, 32 bit integers), x64i = (64 bit arch, 64 bit integers)
compiler and mpi versions
optional marker pCS if parallel computational steering is provided, see ComputationalSteering

MESHFREE - InstallationGuide - ParaViewTipsAndTricks

1.3. ParaViewTipsAndTricks

tips and tricks for postprocessing MESHFREE results with ParaView

By default, MESHFREE writes two types of result files, one for the boundary elements and one for the point cloud. Both
can be visualized by ParaView with already implemented features:

« Switching on the 'Animation View' produces a timeline. Jumping between time steps becomes much easier.
- Switching on the 'Statistics Inspector' provides further information on the loaded data sets, e.g. the number of
points.
- For a boundary elements result file, the aliases are listed in the corresponding 'Multi-block Inspector' tab. By
checking/unchecking the boxes, only the desired aliases can be visualized.
« For a point cloud results file, it is common to change the representation from 'Surface' (default) to 'Points'.
« The following 'Filters' are useful:
o 'Clip" with clip types 'Plane’ and 'Box' (restrict the result geometrically)
o 'Threshold' (restrict the result wrt a scalar quantity)
o 'Glyph" with glyph type ‘Arrow' (visualization of vector fields) and 'Sphere' (visualization of simulation points as
spheres, especially in case of DROPLETPHASE)
o 'Calculator' (compute quantities as a function of the loaded simulation data)
- 'Save State' can be used to save the executed commands. Using 'Load State', a previously saved state can be
restored.

MESHFREE - GettingStarted

2. GettingStarted

first steps with MESHFREE

Training Courses: Introduction to MESHFREE

« 22-24 September 2020 at Fraunhofer ITWM, Kaiserslautern, Germany. Details to follow.
« 16-18 March 2021 at Fraunhofer ITWM, Kaiserslautern, Germany. Details to follow.

If you are interested in attending, please contact our Support team.

Basics

In the Introduction , basic information on the underlying concepts and the general workflow of MESHFREE are presented.
Beginners learn how to run their first simulation.

Tutorials

The Tutorial suite provides an insight into several important features of MESHFREE .

Specials

The LetterCases and SpecialCases from previous or current projects highlight advanced features.

See Download for archives of example setup suites.

List of members:

SpecialCases Selected cases from current or previous projects or solving classical physics
Introduction basic concepts and general workflow of MESHFREE

LetterCases highlighting several capabilities of MESHFREE

Tutorial simple, comprehensive examples in 3D

MESHFREE - GettingStarted - Introduction

2.1. Introduction

basic concepts and general workflow of MESHFREE

Training presentation

In the training presentation you find a detailed introduction to MESHFREE . It explains:

« fundamental concepts of MESHFREE regarding point cloud management
- the general workflow

o preparation of a surface mesh of the bounding/effective geometry

o setup of the InputFiles

o execution of the simulation

o analysis of the results

Training setup

In the training folder you find the InputFiles and geometry for a first project in MESHFREE , a pipe flow:

« USER_common_variables.dat (main input file for the simulation model)
- common_variables.dat (additional input file for development or debugging)
« pipe.msh (surface mesh of the bounding geometry)

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Introduction___GettingStarted___/FundamentalTraining.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Introduction___GettingStarted___/

The setup specifies a transient simulation for a pipe flow with constant inflow velocity.

First run of MESHFREE

Download the training folder to your desired location and execute MESHFREE there. For this, open a shell and execute
the following commands.

cd /path/to/download/TrainingFolder
/path/to/meshfree/installation/folder/meshfree_run.sh

This launches a serial execution of MESHFREE on your local machine. For MPI parallel execution, see Execute .

Note: We presume that MESHFREE has been installed as described in InstallationGuide .

While the simulation is running, you can already take a first glance at the transient results.

To view and analyze the results, we recommend to download and install ParaView. Open the MESHFREE result files
TrainingSetup.case' (MESHFREE point cloud) and 'BE_TrainingSetup.case' (boundary elements, i.e. pipe) in the
subfolder 'results' and take a look at the simulation output.

Figure 1 shows an example of a visualization with ParaView. This can be achieved by adapting the paths to the result files
in the state file "TrainingSetup_ParaViewState.py' and, subsequently, loading it in ParaView.

Figure 1: Visualization with ParaView.

Note: Upon loading the state file, the notation of the file names in the Pipeline Browser of ParaView will change to
EnSightReader1 and EnSightReader?2.

For further information, see the 'Analysis'-section of InstallationGuide .

If you encounter any problems, please contact our Support team .

For bold users

Can you build the file USER_common_variables.dat from scratch such that you get the simulation running? What are the
necessary sections that you need in the file?

Feel free to make use of the training presentation and this documentation to solve this challenge!

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Introduction___GettingStarted___/
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Introduction___GettingStarted___/FundamentalTraining.pdf

Next steps

After the first successful run of MESHFREE , you should continue with the Tutorial .

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases

2.2. LetterCases

highlighting several capabilities of MESHFREE

What we want to simulate

In the LetterCases tutorials we demonstrate several capacities of the MESHFREE software. We do this by taking the
geometrical set-up, consisting of the letters "C", "F" and "D" (for Computational Fluid Dynamics) standing on a plate, and
sprinkling these letters with droplets, letting them melt, rolling them flat with a cylinder and so on. All LetterCases tutorials
are written with the implicit understanding that the user has already worked through the Tutorial cases. In this preliminary
section we want to explain a few things found in most or all LetterCases UCV files that may have not been covered by the
Tutorial or are worth a short explanation.

Geometry manipulations
When we include the letters we will often do additional modifications of their geometries. The include{} command for the
letter "C" could, for example, look like this:

begin_boundary_elements{ }

include{ C.stl}, applyAlias{ "C"}, scale{ &scaleC& }, offset{ [&offset0C(1)&], &offset0C(2)&],[&offset0C(3)&]},
reorientation{ %GEQO_Tube%, %GEO_QOutside% }

end_boundary_elements

With the command offset{ } we can change the position of the letters. This allows us to place the letters nice and ordered in
a row, whereas they would otherwise be overlapping each other. With reorientation{ } we can force the directions of the
normal vectors of the geometries to the outside or the inside by choosing %GEO_Outside% or %GEO_Inside%
respectively. This feature allows us to use the same geometry files for all LetterCases , whether we want the letters to be
rigid and to interact with particles from outside itselves or we want the letters to contain particles and change their shape.

We will often need information about the space one of the letters, all letters together or the plate is occupying. We can get
this information with a CONSTRUCT clause. Equipped with the argument %CONSTRUCT_BoxMidPoint% , it draws a box
around the geometrical item whose alias it is given as the third argument. It returns a vector containing the position of a
point somewhere on a line between the lower left und the upper right corner of the box, its exact position depending on the
second argument.

begin_construct{ }

"minC" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0, "C")
"maxC" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 1, "C")
end_construct

In this case, "minC" would contain the position of the lower left corner of the box, whereas "maxC" would contain the
position of its upper right corner. With 0.5 as second argument, we would receive the position of the centre of the box.

10

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Introduction___GettingStarted___

Figure 0: The general geometrical set-up.

Stability constraints

Sometimes, for example when a point has few neighbors or when the order used in the approximation of its differential
operators is low, we want to vary some boundary conditions to maintain a certain level of numerical stability. We define an
equation called "IsCritical" to quickly test a particle for possible stability issues.

#

T

stability constraints
#

begin_equation{ $IsCritical$ } # 1 means critical, -1 means all in butter

if (0)::1

elseif (Y%ind_OrdApprox(2)%<2) :: 1 # bad order of approximation (laplace)

elseif (Y%ind_OrdApprox(1)%<2) :: 1 # bad order of approximation (gradient)

elseif (Y %ind_nbRegularNeighbors% < 15) :: 1 # number of neighbors less than 15
elseif ('Y %ind_nblnteriorNeighbors% < 4) :: 1 # if a tear-off point (direct link between free surface and wall) has too few
neighbors

else :: -1 # point NOT critical (regular case)

endif

end_equation

ENFORCE_min_max ($Mat1$,%ind_v(1)%) = (-3.0, 3.0)

ENFORCE_min_max ($Mat1$,%ind_v(2)%) = (-3.0, 3.0)

ENFORCE_min_max ($Mat1$,%ind_v(3)%) = (-3.0, 3.0)

For the same reasons we set an upper and lower limit for the velocity. This is achieved by the handy command
ENFORCE_min_max . Since these commands are evaluated at the end of each time step, the results of the time
integrations are taken and values that are too small or too big are set to the maximum and minimum values, respectively.

See Download for archives of example setup suites.

11

List of members:

CleaningJet Letters getting washed away by a water jet
Coating Letters getting coated with enamel

Melting Letters melting in two different ways

Rolling Letters getting flattened by a rolling cylinder
Spray Letters getting sprayed with paint

Swelling Letters swelling like bread

Swelling_b Letters swelling like muffins

MESHFREE - GettingStarted - LetterCases - CleaningJet

2.2.1. CleaningJet

Letters getting washed away by a water jet

Goals of this Unit:
« Combine several UCV files
« Allow single particles to exist
« Let several materials interact with the same boundary
« Delete particles with EVENT statements

The fluid-mechanical problem

The letters are hit by a water jet and washed away. It will be necessary to model the letters and the water as two different
materials and to take into account that the water will meet the letters with such force that a lot of particles might get
isolated from the bulk. We should also delete particles that distance themselves too far from the geometry.

Manage two materials
One could manage several materials in two different ways:
« Use one file for all materials
« Use several files, each containing the informations for one material

The first option means a bit less work but can get easily much more confusing than the second option, even with just two
materials. The typical way to go about this would be to use option 2 and to include the UCV files of the materials 2-n in the
file of material 1 with this simple command:

include_Ucv{ Ucv_Water.dat}

Allow isolated particles
To allow isolated particels, i.e. particels that do not have any neighbor in their immediate vicinity, one has to add the
following lines to the common_variables file:

COMP_IsolatedParticles_ MinNbOfNeigh = 0
COMP_IsolatedParticles_MinNbOfInteriorNeigh = 0

By default, these options are set to 1 and 6 respectively, meaning whenever a particle has less than 1 interior point or less
than 6 interior or boundary points near it, it gets deleted.

Two materials using the same boundary

The particles of the letters and of the water will both interact with our geometry "plate". Since we can associate "plate" with
only one material, we need to use a little trick: We create a duplicate of "plate" called "plateWater" and can use it for our
second material. Because the orientation of a duplicated boundary element is reversed by default, we need to do a
revOrient{ } to regain the original orientation.

12

begin_boundary_elements{ }

manipulate{ "plate"} duplicate{ "plateWater"}
manipulate{ "plateWater"} revOrient{ }
end_boundary_elements

Deleting points with events
EVENTSs are defined with at least a condition and the event that will be triggered for a particle which meets that condition.
In our case we use the event %EVENT_DeletePoint% , which deletes a particle meeting at least one out of five conditions.

EVENT = ([if (Y%ind_cham%3>0.5) :: Y %ind_x(1)% -(&maxPlate(1)& +1) else :: -1 endif], %EVENT_DeletePoint%)
EVENT = ([if (Y%ind_cham%3>0.5) :: (&minPlate(1)& -1)-Y %ind_x(1)% else :: -1 endif] , %EVENT_DeletePoint%)
EVENT = ([if (Y%ind_cham%>0.5) :: Y %ind_x(2)% -(&maxPlate(2)& +1) else :: -1 endif], %EVENT_DeletePoint%)
EVENT = ([if (Y%ind_cham%3>0.5) :: (&minPlate(2)& -1)-Y %ind_x(2)% else :: -1 endif] , %EVENT_DeletePoint%)
EVENT = ([if (Y%ind_cham%3>0.5) :: Y %ind_x(3)% -2 else :: -1 endif] , %EVENT_DeletePoint%)

Keep in mind that EVENT can do more than just delete particles, it could also be used to manipulate certain indices of
particles meeting its conditions.

Figure 10: Mid-simulation results.
velocity Magnitude
3.431e+00

£2.5735

1.7157

=0.8578

0.000e+00

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases - Coating

2.2.2. Coating

Letters getting coated with enamel

Goals of this Unit:
« Create plain boundary elements

The fluid-mechanical problem

The letters are getting coated by fluid emanating from a moving inflow boundary. We will only have a short look on how to
create the geometry for the inflow boundary since the USER_common_variables file is easy to understand for everyone
who completed the 3D tutorial.

Plain boundary elements

We create the inflow boundary as a rectangle by connecting two triangles. We create triangles with the command BND_tria
simply by giving it the coordinates of three corner points.

13

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.CleaningJet

begin_boundary_elements{ }

BND_tria &inflow& &inflow1(1)& &inflow1(2)& &inflow1(3)& &inflow2(1)& &inflow2(2)& &inflow2(3)& &inflow3(1)&
&inflow3(2)& &inflow3(3)&

BND_tria &inflow& &inflow3(1)& &inflow3(2)& &inflow3(3)& &inflow4(1)& &inflow4(2)& &inflow4(3)& &inflow1(1)&
&inflow1(2)& &inflow1(3)&

end_boundary_elements

We realize that we neither need a different alias for every created geometry item nor any extra commands to unite several
geometry items under one alias.

Instead of creating two adjacent triangles with BND _tria, we could also use BND_quad to create the rectangle with only
one command. This wouldn’t change a thing however, because FPM creates rectangles internally as a combination of two
triangles anyway.

Figure 8: Mid-simulation results.

StartTime
E3. 189e+00

=-2.3919

1.5946

—0.7973

0.000e+00

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases - Melting

2.2.3. Melting

Letters melting in two different ways

Goals of this Unit:
« Get to know the temperature boundary condition %BND_AVERAGE%.
« Use CODI to buffer information from bygone time steps.

The fluid-mechanical problem

We are simulating two problems within this LetterCase:

(i) The letters are standing on a warm plate of constant temperature. By getting heated they melt and dissolve from bottom
to top, just like butter in a frying pan.

(i) The letters are standing in an oven. They are getting heated by recirculating air and start to dissolve from top to bottom.

We will first have a look at at problem (i).

Setting appropriate boundary conditions

A constant temperature for the plate (BC_pool) is easily set with a Dirichlet condition. For the free surface particles
(BCO) of the letters to be gradually heated by the plate, we apply %BND_AVERAGE% as boundary condition. Thus the
current temperature of a free surface point is calculated as a weighted average of the temperature of its neighboring
points.

BC_T (0) = (%BND_AVERAGE%, 0, 0)
BC_T (BC_pool) = (%BND_DIRICH% , 1)

14

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Coating

Manipulate the viscosity with a UserDefinedindex

We do not want the melting to be too aprupt. Therefore we need to constrain the decrease of viscosity in every timestep
via its value in the previous timestep. This requires us to buffer the viscosity. The typical way to go about this would be by
using a CODI variable to store this information, because all CODI commands are evaluated at the end of each time step
after the time integration, while physical properties like the viscosity are updated before the time integration. This enables
us to carry the information on physical properties from a previous timestep into the time integration of the following time
step. We introduce a so-called UserDefinedIndex %indU_ETA_lastTS% and set it to be equal to Y %ind ETA% .

lleta—minlv — n1 On

INITDATA ($Mat1$,%indU_ETA_lastTS%) = &eta_min&
CODI_eq ($Mat1$,%indU_ETA _lastTS%) = [Y %ind_ETA%]

With this information up our sleeve we define the viscosity like this:
eta($Mat1$) = [max(&eta_min& *exp(-12*Y %ind_T%), 0.00001* &eta_min& , 0.5*Y%indU_ETA lastTS%)]

The first argument of max is a model of the viscosity decrease caused by rising temperature, the following arguments are
constraints, averting the viscosity to plummet below a minimal value and by more than a half respectively.

The picture below shows how the letters are slowly melting from bottom to top, changing their shape and sliding across the
plate.

Figure 4: Melting from the bottom
temperature

£ 0.25

--2.919e-11

Swap the boundary conditions

It is very easy to change the UCV to represent case (ii) instead of (i). One only needs to change the thermal conductivity
lambda, the minimum viscosity eta_min and Tend to more convenient values and to swap the temperature boundary
conditions for the free surface and for the plate.

"eta_min" = "1000"
Tend = 250
lambda($Mat1$) = 1

BC_T (0) = (%BND_DIRICH% , 1)
BC_T (BC_pool) = (%BND_AVERAGE%, 0, 0)

The result should look like this:

15

Figure 5: Melting from the top

Looking at a cross-section of the simulation shows the difference in temperature distribution compared to (i):

Figure 6: A cross-section of the letters
femperature

—1.000e+00

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases - Rolling

2.2.4. Rolling

Letters getting flattened by a rolling cylinder

Goals of this Unit:
« Construct a cylinder.
- Define its movement (translations and rotations) via curves.
« A short excursion about BC_TearOffCriterion .

The fluid-mechanical problem

The letters are flattened by a huge cylinder rolling back and forth, just like dough getting flattened by a rolling pin. We want
to simulate a situation where the pin is coated in flour, thereby preventing the dough from sticking to it. We also have to
take into account that the cylinder does not only do a translation but also a simultaneous rotation.

Construction of the cylinder

First we create an alias for the cylinder. lts boundary conditions will later be referenced by BC_roll und its movement by
$MOVE_roll$. We arbitrarily set its radius to 0.5.

16

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Melting

begin_alias{ }

"roll" =" BCBC_roll ACTIVE$noinit_always$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid%
MOVE$MOVE_roll$ LAYERO CHAMBER1 "

end_alias

begin_alias{ }
"rRO”H = ll0.5ll
end_alias

We need more information on the measurements of our boundary elements to construct the cylinder with the correct length
and to define its movement from one edge of the plate to the opposite edge. Therefore we get the points at the lower left
and upper right corners of enclosing boxes around the 3 letters and the plate respectively. With these we can define three
important values.

begin_construct{ }

"minALL" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.0, "C","F","D")
"maxALL" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 1.0, "C","F","D")
"minPlate" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.0, "plate")
"maxPlate" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 1.0, "plate")
"roliCenter" = " [&minALL(1)&-&rRoll&] , [&minPlate(2)&] , [&maxALL(3)&+&rRoll&] "
"rollTravelLength" = " [&maxALL(1)&-&minALL(1)&+2*&rRoll&]"

"rollOmega" = " [(2*3.1415926/2)*(&rollTravelLength&/(2*3.1415926*&rRoll&)) 1"
end_construct

The first is "rollCenter", which will be used as the central point of the bottom endpiece (with respect to the y-axis) of the
cylinder. The second is "rollTravelLength”, which is the traveling distance of the cylinder. The third is "rollOmega", the
angular velocity of the cylinder. Its definition means that the cylinder will do 0.5*&rollTravelLength&/&rRoll& full rotations
every second.

With these values we can now easily define the cylinder via the command BND_cylinder .

begin_boundary_elements{ }

BND_cylinder &roll& &rollCenter(1)& &rollCenter(2)& &rollCenter(3)& 0 1 0 [&maxPlate(2)& - &minPlate(2)&] &rRoll&
&rRoll& 40

manipulate{ "roll"} revOrient{ }

end_boundary_elements

It needs an alias ("roll"), the position of the central point of the bottom endpiece of the cylinder (&rollCenter(1)&
&rollCenter(2)& &rollCenter(3)&), a direction (0 1 0), the length of the cylinder ([&maxPlate(2)&-&minPlate(2)&]) and the
radii for the bottom and the top endpiece (both &rRoll&). The number 40 is given as an optional argument and determines
the fineness of the resolution of the round cylinder.

Defining the movement of the cylinder
We define the translation and the rotation of the cylinder by two different curves. The first curve $CRV_centerOfRoll$
describes the translation of the point "rollCenter" dependent on time.

begin_curve{ $CRV_centerOfRoll$ }, nb_functions {4}
0.0 %MOVE_position% 0 0 0

0.1 %MOVE_position% 0 0 -0.25

2.1 %MOVE_position% &rollTravelLength& 0 -0.25
2.2 %MOVE_position% &rollTravelLength& 0 -0.375
4.2 %MOVE_position% 0 0 -0.375

4.3 %MOVE_position% 0 0 -0.4375

6.3 %MOVE_position% &rollTravelLength& 0 -0.4375
6.4 %MOVE_position% &rollTravelLength& 0 -0.46875
8.4 %MOVE_position% 0 0 -0.46875

end_curve

The point is moved from left to right and vice versa. It crosses the distance after two seconds. At the start and every time it
reaches an edge, it is lowered a bit.

The rotation is described by the curve $CRV_omegaOfRoll$. The direction of the rotation is changed every time
"rollCenter" reaches one of the two edges.

17

begin_curve{ $CRV_omegaOfRoll$ }
0.00

0.1 &rollOmega&
2.1 &rollOmega&
2.2 - &rollOmega&
4.2 - &rollOmega&
4.3 &rollOmega&
6.3 &rollOmega&
6.4 - &rollOmega&
8.4 - &rollOmega&
end_curve

The translation statement only concerns "rollCenter". We need to link this movement and the rotation with "roll", the actual
rigid body, via a fitting MOVE statement. This can be done with the command %MOVE_TranslationRotation% . As the
name suggests, it lets us combine a translational with a rotational movement for a boundary element. It needs a point on
the initial centre of rotation (&rollCenter(1)&, &rollCenter(2)&, &rollCenter(3)&), a MOV E statement describing the
movement of this centre ($MOVE_centerOfRoll$) and a vector for the angular velocity (0, curve{$CRV_omegaOfRoll$}{0},
0).

MOVE ($MOVE_centerOfRoll$) = curve{ $CRV_centerOfRoll$ }{0}
MOVE ($MOVE_roll$) = (%MOVE_TranslationRotation% , &rollCenter(1)& , &rollCenter(2)& , &rollCenter(3)& ,
$MOVE_centerOfRoll$, 0, curve{ $CRV_omegaOfRoll$ }{0}, 0)

About tear-off criteria

MESHFREE offers its users the opportunity to create their very own tear-off criteria. Tear-off criteria determine when a
boundary point becomes a free surface point. This is, for example, important when one is considering gravity effects.
Boundary points that experience a strong acceleration away from their boundary elements should not be glued to these
possibly unmoving boundaries but rather become free surface particles instead.

BC_TearOffCriterion (BC_roll) = ([(Y %ind_v(3)%)], [(Y %ind_act% -3)])

We can define our own tear-off criteria with BC_TearOffCriterion (BC_roll). A boundary point of BC_roll becomes a
free surface particle when all statements on the right hand side of the expression above are true. In our case it would
mean that a boundary particle of the cylinder becomes free, when it is both moving upward and when it was active for
more than three time steps. This ensures that our material is not sticking to the cylinder after being flattened.

: Figure 9: Rolling : Mid-simulation results.
velocity X

2.750e-01

0

-0.309

-0.617

-9.597e-01

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases - Spray

2.2.5. Spray
Letters getting sprayed with paint

18

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Rolling

Goals of this Unit:
e Learn how to use DropletSource
« Learn about the rand function

The fluid-mechanical problem
The letters are getting sprinkled by droplets. The droplets are randomly distributed along a line that is moving along the
plate.

Creating a DropletSource

A DropletSource produces droplets non-stop with a time lag between the individual droplets that is determined by its first
two arguments: The very first argument defines the volume flux in m"3/s to be created by the source and the second
argument the volume of each droplet. The next three Arguments determine the (potentially time-dependent) spatial position
of the source, while the last two arguments determine the chamber and material index of the droplets respectively.

DropletSource = (0.020, [(1.5* &H_min&)**3], curve{ $CRV_centerOfinflow$ }0}, [&minALL(2)& + rand(1)*(
&maxALL(2)& - &minALL(2)&)], 1, 1, $Mat1$)

In our case we set the source to be at a fixed height above the letters. In x-direction it moves slowly along the plate from
left to right and vice versa as defined in $CRV_centerOfinflow$. The y-coordinate is changed randomly every time a new
droplet is produced, but within the boundaries of the plate.

How rand() works

The function rand(a) produces a random number when it is called. It produces a number between 0 and a if a is a positive
real number and a number between -a and a if a is negative.

Figure 7: Mid-simulation results.

Suggestions to explore MESHFREE
« Play around with the first two arguments of DropletSource and see how they can speed up or slow down the droplet
generation
« You could also try to replace rand() with some self-written equation to make the droplets fall in a certain order

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - LetterCases - Swelling

2.2.6. Swelling

Letters swelling like bread

Goals of this Unit:
« Heat the letters gradually from the outside.
« Make density and viscosity dependent on temperature.

19

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Spray

The fluid-mechanical problem
We want the letters to behave like bread dough getting heated in an oven. To do this we need to apply heat gradually to
the outside of the letters and we need the letters to swell and to change their texture during the heating process.

Apply heat to the letters

First of all, we want the letters to have a free surface so they can change their shape. This is achieved by setting their
ACTIVE flags to ACTIVE $init_never$, which lets the boundaries of the letters participate in the initial filling of the point
cloud but ignores them afterwards.

"C" =" BCO ACTIVESinit_never$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid% MOVE-1 LAYERO
CHAMBER1 SYMMETRYFACE2 "
"F" =" BCO ACTIVESinit_never$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid% MOVE-1 LAYERO
CHAMBER1 SYMMETRYFACE3 "
"D" =" BCO ACTIVESinit_never$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid% MOVE-1 LAYERO
CHAMBER1 SYMMETRYFACE4 "

This creates free surface particles at the boundaries "C", "F" and "D", which can now be referenced by the boundary
condition "0". We force their temperature to grow linear with time. Its value starts by 0 at Y %ind_time% = 0 and scales up
to a maximum of 1 at Y %ind_time% = 2.

BC_T (0) = (%BND_DIRICH% , [min(0 + 0.5*Y %ind_time% , 1)])

Manipulate density and viscosity

By letting the density of the particles increase with temperature, we can induce an expansion of the letters. We also want
the viscosity to increase with temperature, thus simulating the hardening of the dough during the baking process. Finally,
we restrain both parameters, thus modeling the end condition when the dough has fully transformed into bread. All of this
can be achieved very simply via the max-function.

density($Mat1$) = [max(1-0.7*Y %ind_T% , 1-0.7)]

eta($Mat1$) = [&eta_min& + (max(Y %ind_T% ,0.001)"1.5)*30]

Here is an intermediate result of the simulation, where one can see the temperature distribution throughout the letters:

Figure 1: A cross-section of the letters taken
mid-simulation

=1.893e-02

Suggestions for exploring MESHFREE
« Exchange the temperature boundary conditions for the letters and the plate
« Tinker with the provided expressions for density and viscosity. You could for example impose smaller or higher
boundaries on the density

DOWNLOAD COMPREHENSIVE EXAMPLE

20

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Swelling

MESHFREE - GettingStarted - LetterCases - Swelling b

2.2.7. Swelling_b

Letters swelling like muffins

Goals of this Unit:
« Learn about advanced geometry manipulations.
« Establish a metaplane.

The fluid-mechanical problem

We want the letters to behave like muffin dough getting heated in a muffin pan. Since we can simulate the physical
properties of the dough very similar to the first Swelling case, this tutorial will instead focus on manipulating the geometry
of our letters to make their shape more alike to a muffin pan.

Transform the letters into a conus-like shape

We start off by shifting our letters to the center of the x-y-plane. This enables us to deform the letters in x- and y-direction
in a way that is symmetric to the z-axis. With scale{ [1+Y %ind_x(3)% *0.7] we achieve a conus-like shape. After that we
shift the letters back to their initial position.

begin_construct{ }

"midC" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "C")

"midF" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "F")

"midD" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "D")

end_construct

begin_boundary_elements{ }

manipulate{ "C"} offset{ - &midC(1)& , - &midC(2)& , 0 }, scale{ [1+Y %ind_x(3)% *0.7] , [1+Y %ind_x(3)% *0.7] , 1},
offset{ &midC(1)& , &midC(2)&, 0}

manipulate{ "F"} offset{ - &midF(1)& , - &midF(2)&, 0}, scale{ [1+Y %ind_x(3)% *0.7] , [1+Y %ind_x(3)% *0.7], 1},
offset{ &midF(1)& , &midF(2)&, 0}

manipulate{ "D"} offset{ - &midD(1)& , - &midD(2)& , 0 }, scale{ [1+Y %ind_x(3)% *0.7] , [1+Y %ind_x(3)% *0.7] , 1},
offset{ &midD(1)& , &midD(2)&, 0}

end_boundary_elements

Since we want the geometry to be similar to a muffin pan, we also need it to be open at the top. We construct a box
around all three letters and get the position "maxALL" of a point which is just a bit bellow the top of the box. This point is
also just below the top of every individual letter, because all letters have the same height. With the command
removeBEonCondition we can now delete every particle whose position is above "maxALL", thereby removing the top of
every letter.

begin_construct{ }

"maxALL" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.999, "C", "F", "D")

end_construct

begin_boundary_elements{ }

manipulate{ "C","F","D"} removeBEonCondition{ %GEO_removeBasedOnNodes%, [Y %ind_x(3)% > &maxALL(3)&] }
end_boundary_elements

Restrict the initial point cloud with a metaplane

When baking muffins one does not fill the muffing pan full to the brim but rather to the half. This means in terms of our
simulation that we want to restrict the initial point cloud to remain below a certain plane parallel to the x-y-plane. We can
easily achieve this by using a metaplane. A metaplane cuts off all points outside of it. By choosing $init_never$ for its
active flag, we can restrict the point cloud during the initial filling and make the metaplane inactive for the rest of the
simulation. A metaplane needs to be defined with a number to distinguish it from other possibly existing metaplanes:

"plane" = " METAPLANE1 BCBC_free ACTIVESinit_never$ "

The plane itself can easily be defined by two vectors: The postion of an arbitrary point of the plane and the direction of the
normal vector of the plane.

begin_boundary_elements{ }
BND_plane &plane& 0 00.30 0 -1
end_boundary_elements

21

In this case the position is (0, 0, 0.3) and (0, 0, -1) is the direction.

The restricted initial point cloud in the modified letter forms should look like this:

Figure 2: Point distribution at the beginning of
the simulation

If we look at the temperature distribution of the points during the simulation, we can clearly see the different boundary
conditions for the boundary points on the letter forms and the free surface boundary points:

Figure 3: Mid-simulation results

temperature
1.000e+00

0.9393

0.8785

08178

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases

2.3. SpecialCases

Selected cases from current or previous projects or solving classical physics

See Download for archives of example setup suites.

22

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.LetterCases.Swelling_b

List of members:

BasicPhysics Solve selected cases from classical physics and fluid mechanics
AirIntake Air intake example to create a stable air flow field

MultiPhaseCoupling Solve selected test cases in the field of multi-phase simulations
SimulationSplittingWithMEMORIZE usage of the MEMORIZE-feature to split a simulation

WaterCrossing Solve selected test cases in the field of water crossing simulations
WaterManagement Solve selected test cases in the field of water management simulations

MESHFREE - GettingStarted - SpecialCases - Airintake

2.3.1. Airintake

Air intake example to create a stable air flow field

This example shows how to set up an air intake simulation to get a stable and stationary air flow field. Furthermore it
focuses on the EULERIMPL solver to save computation time for such test cases. The setup consists of a simple double
walled tube within an air box:

L.

At the bottom of the tube the air is sucked in with a user given velocity. To check the results, the dynamic pressure is
compared to the Bernoulli pressure based on the maximum velocity:

INTEGRATION ($PDYN_MIN$) = (%MINIMUM_INT% , [Y %ind_p_corr%], air , %INTEGRATION_Header%,
"p_dyn min")

INTEGRATION ($P_Bernoulli$) = (%PUBLICVALUE% , [-0.5%1.0*(integ(VEL_MAXS))*2],
%INTEGRATION_Header%, "p_Bernoulli")

INTEGRATION ($DIFF_P_DYN_P_Bernoulli$) = (%PUBLICVALUE% , [abs(integ($PDYN_MIN$) - integ(
$P_Bernoulli$))], %INTEGRATION_Header%, "difference p_dyn - p_Bernoulli")

Recommended Settings

The best results can be achieved with the following settings:
« Use constant density (purely incompressible).
« damping_p_corr(1) = 0.0, so that the dynamic pressure is not considered for the initial guess in the next time level.
« No use of boundary conditions for the dynamic pressure, e.g. BCON (xxx,%ind_p_corr%) resp. BCON
($xxx3$,%ind_p_dyn%).
« Static/Bernoulli pressure condition at box surface dependent on flow direction (see input file):

23

BC_p (air_out) = (%BND_DIRICH% , equn{ $StaticPressureAtOutflow$ })

Results of Stationary Air Flow Field

Dynamic Pressure at t = 5:

2.9e-03
F

~ 20
40

| |
—-60

1
-9.5e+01

pressure_dynamic

Velocity att = 5:

1.3e+01
|

i |
velocity Magnitude

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - BasicPhysics

2.3.2. BasicPhysics

Solve selected cases from classical physics and fluid mechanics
Examples comparing the numerical MESHFREE results with analytical approaches or with measurement results.

See Download for archives of example setup suites.

24

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.AirIntake

List of members:

Sand applications for sand as continuous phase
Bernoulli Compare numerical results to the Bernoulli equation
CollidingDropletsinCone Colliding droplets in cone geometry
TwoPhaseDarcy water jet deflected by air

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - Bernoulli
Bernoulli

Compare numerical results to the Bernoulli equation

In many quasi-stationary applications with negligible viscous forces, one can use the Bernoulli equation to give an
analytical estimate of the flow results (or parts of it). Bernoulli states

1
Po+ §pUTU + pgT:r: = const

It is valid throughout the flow domain (in this case we have potential flow, i.e. flow with no rotation) - at least, it is valid for
each pathline of the flow.

List of members:

FlowOutOfSimpleTank flow of a liquid out of a tank

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - Bernoulli
FlowOutOfSimpleTank

FlowOutOfSimpleTank

flow of a liquid out of a tank
The flux of a liquid out of a tank is given by Torricellis law .

In this example, we measure the numerical flux of a liquid out of a tank through two measurement planes and compare it
to the theoretical value of Bernoulli /Torricelli. As their theory bases on non-viscous flow, we switch off the turbulence
model and impose pure slip boundary conditions at the walls.

25

https://en.wikipedia.org/wiki/Torricelli's_law

wall-

Plane1 (for flux mecasurihg)l
Plane2 (for flux meusuring)l

alias

o]

Note:For the flux measurement, we employ the flux integration (see %INTEGRATION_FLUX% and
%INTEGRATION_FLUX_TIME%).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - CollidingDropletsinCone

CollidingDropletsinCone
Colliding droplets in cone geometry

This example showcases some of the capabiliies of the DROPLETPHASE solver in resolving collisions. The
corresponding models and UCV syntax can also be found on the DropletCollisions page.

Starting point

As a starting point, we consider a block of DROPLETPHASE points which are filled within a cone geometry and with
randomly varied droplet diameters:

g 0.1

— 0.0e+00

26

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.BasicPhysics.Bernoulli.FlowOutOfSimpleTank

The random variation of droplet size was defined via

INITDATA ($DUST$,%ind_d30%) = [nrand(&InitD30& , &D30sigma&)]

where %ind_d30% is the index storing the diameter of DROPLETPHASE particles. After initialization we will let these
particles fall down under the effect of gravity which is pointing towards the tip of the cone, i.e. in negative z-direction.

Defining the collision model

To model the expected rebound of particles from the walls of the cone, we have to enable the collision model for
boundaries by specifying

BC_v ($wallt$) = (%BND_COLLISION% , &kn_pw& , &en_pw& , &Ea_pw& , &Ra_pw& , &mu_pw& , &SF_pw& ,
&theta_pwé&)

for the velocity boundary condition of all parts of the cone. Details on the arguments may be found under
%BND_COLLISION% . It is important to note that the spring stiffness needs to be adapted to the configuration at hand.
Specifically this means that it has to be chosen large enough so that overlaps dont become too large for the given particle
masses and collision velocity. In addition to boundary collisions, we also want to consider interactions between the
particles so that they can stack on top of each other when gathering in the tip of the cone. This may be enabled via

Particlelnteraction($DUSTS) = (&kn_pp& , &en_pp& , &Ea_pp& , &Ra_pp& , &mu_pp&)

Again, for an explanation of the parameters we refer to the Particlelnteraction. The models behind both
%BND_COLLISION% and Particlelnteraction are described in detail in DropletCollisions .

Time step restrictions and subcycling

To accurately reproduce collision dynamics it is important to make sensible choices for the time step within the
DROPLETPHASE . In this example, two special time step restrictions are used:

Restriction via COEFF _dt d30 :

This is similar to COEFF_dt in that it ensures that points only travel a certain distance within each time step. The
DROPLETPHASE -specific COEFF_dt_d30 only distinguishes itself from COEFF_dt by taking the particle radius instead of
the smoothing length as reference distance. By supplying a value smaller than 1.0 it is guaranteed that all collisions
captured by at least a single time step.

Restriction via DELT_dt AddCond :

While no collision would go unnoticed for COEFF_dt_d30 smaller than 1.0, there is no guarantee that with this restriction
alone the theoretical behavior of the collision model is reproduced accurately for all values of the spring stiffness. To
alleviate this problem and make sure that every collision is reproduced to a satisfactory degree, we prescribe the additional
condition

DELT dt AddCond ($DUST$) = [&frac_dtcoll& *min(equn{ $DUST dt_coll_pw$ },equn{ $DUST dt_coll_pp$})]

which ensures that multiple timesteps are within the theoretical contact duration of a collision.
Subcycling:

In order to avoid that all point organization routines are called in every one of the small time steps imposed by the above
conditions, we further enable the subcycling within the DROPLETPHASE by setting

COMP_DropletphaseSubcycles = 200

Simulation result
27

Running the simulation with the predefined settings will show that particles are colliding with the side wall of the cone and
slide downwards toward the tip, as is depicted in the following image:

— 1.0e+00
— 09

0.8

R 0.1

— 0.0e+00

The user is encouraged to try out modifications of the predefined switches and in particular the time step parameters
above. An important step towards setting up own simulations using the DROPLETPHASE collision capabilities is building
an understanding of why different time step restrictions are necessary and which behavior has to be expected whenever
they are violated.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - Sand

Sand

applications for sand as continuous phase

In the examples given below, we use a continuous approach to model the behavior of sand, namely the
DruckerPragerModel .

List of members:
SandPileDeposition sand pile deposition

SandGuidedSpherelmpact guided sphere impact into sand

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - Sand
SandGuidedSpherelmpact

SandGuidedSpherelmpact

guided sphere impact into sand

A sphere impacts a box filled with sand, see Figure 1. The movement of the sphere is guided, i.e. it moves with given
constant velocity in z-direction.

28

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.BasicPhysics.CollidingDropletsInCone

. " Figure 1: Evolution of the simulation of a
‘ ‘ .
‘ ‘

If the movement of the sphere should be that of a rigid body, the MOVE -statement has to be adapted accordingly (see
%MOVE_rigid%).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - Sand - SandPileDeposition

SandPileDeposition
sand pile deposition

Sand is injected at an upwards moving inflow and hits a flat surface, see Figure 1. The sand collects on the surface in a
growing pile according to the angle of repose which is determined by the coefficient CDruckeerger in
DruckerPragerModel .

Figure 1: Evolution of sand pile deposition.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - BasicPhysics - TwoPhaseDarcy

TwoPhaseDarcy
water jet deflected by air

A water jet is deflected by moving air. In general, 2 phases are set up for water and air,
which are then coupled as follows.

Water to air via flow through porous medium

DarcyConstant(Air) = [min(1, projY(2,%ind_kob%))*1.0e5]
29

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.BasicPhysics.Sand.SandGuidedSphereImpact
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.BasicPhysics.Sand.SandPileDeposition

DarcyBasisVelocity(Air) = ([projY(2,%ind_v(1)%)], [projY(2,%ind_v(2)%)], [projY(2,%ind_v(3)%)])

Air to water via pressure boundary condition at free surface:

BC_p (0) = (%BND_free_implicit%, [equn($WaterlnBox$)*(projY(1,%ind_p%)+projY(1,%ind_p_dyn%))])

Note: This is a completely different coupling approach from the one using BCON_CNTCT .

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - MultiPhaseCoupling

2.3.3. MultiPhaseCoupling

Solve selected test cases in the field of multi-phase simulations

Examples showing the capabilities of MESHFREE in applications where different phases are interacting with each other.

List of members:

ChannelWithFilter One-Way coupling of droplets and air in channel with filter
PorousBlock Local flow resistance due to block of porous material
PorousBlockAnisotropic Local flow resistance due to block of anisotropic porous material
WaterSand A jet of water and sand hits a plate

MESHFREE - GettingStarted - SpecialCases - MultiPhaseCoupling - ChannelWithFilter

ChannelWithFilter
One-Way coupling of droplets and air in channel with filter

This example showcases some of the capabilities of the DROPLETPHASE solver in representing one-way coupled flow

scenarios.

Starting point

As a starting point, we consider a simple flow of air through a channel which has a reduction of its cross-section half-way

along the x-axis:

The DROPLETPHASE chamber

30

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.BasicPhysics.TwoPhaseDarcy

At the inlet of this channel, DROPLETPHASE points are added via the DropletSource command. These droplets move
under the effect of drag until they hit a wall which is not visible by the fluid phase and can be thougt of as some kind of
filter. This wall is depicted below

Simulation result

Running the simulation with the predefined settings will show that particles are gathering at the center of the "filter" wall, as
is depicted in the following image:

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - MultiPhaseCoupling - PorousBlock

PorousBlock
Local flow resistance due to block of porous material

Starting point

As a starting point, let us consider the simple channel flow fromtut3d_01 but with an extended channel. Clearly, this
results in the following velocity field:

>
5]
o
T

Introducing local flow resistance

In a wide range of applications the fluid is not moving as freely as in the above example. Local flow resistance may be
caused by suspended particles of another phase or by a contiguous porous medium, such as filters. To understand how

31

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.MultiPhaseCoupling.ChannelWithFilter

we can introduce such a flow resistance into the above channel flow, let us assume that a single block of porous material is
present within the flow geometry. One way to define this by means of UCV functionalities is through an indicator function:

begin_equation{ $Blockindicator$ }
(Y%ind_x(1)%>-0.25)*(Y%ind_x(1)%<0.25)*(Y%ind_x(2)%>-0.35)*(Y%ind_x(2)%<0.35)*(Y%ind_x(3)%>-0.35)*
(Y%ind_x(3)%<0.35)

end_equation

Clearly, this equation will be equal to 1 if and only if points are within the porous material volume.

Since the block is stationary, we further want to prescribe zero velocity for all components of the porous material velocity.
We may do this via the following command:

DarcyBasisVelocity($MatUSER$) = (0.0, 0.0, 0.0)

Now that we have properly defined the position and velocity for our porous basis material, we further need to provide a
measure of the resistance that the fluid phase experiences when passing through the porous block. To do this, we specify
the DarcyConstant while using the above indicator function equation:

DarcyConstant($MatUSER$) = ([&cDarcy& *equn{ $Blockindicator$ }])

If only DarcyConstant (for a straight-forward extension see ForchheimerConstant) is specified, this value manifests itself in
a momentum sink

—8-(v—vg)
which is added to the momentum equation (see EquationsToSolve) for every point within the volume occupied by the
porous material. In the above term, Vg denotes the velocity of the porous material, which we specified above as

DarcyBasisVelocity . Note that DarcyConstant actually defines a constant ﬁ which is related to 3 via g = fjp . This
steams from the classical formulation of Darcys law

~Vp=8(v—vg)
and the fact that we have %Vp on the left-hand side of the momentum equation in EquationsToSolve .

Simulation results

The image below shows the decrease in fluid velocity due to local flow resistance and further visualizes how the the fluid is
accelerated towards the side walls in order to maintain the total mass flow rate:

>

=
9]

el
o
>

Representing anisotropic materials

Refer to PorousBlockAnisotropic for the treatment of anisotropic materials.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - MultiPhaseCoupling - PorousBlockAnisotropic

32

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.MultiPhaseCoupling.PorousBlock

PorousBlockAnisotropic
Local flow resistance due to block of anisotropic porous material

This tutorial is an extension of PorousBlock .
Representing anisotropic materials

In PorousBlock we specified a scalar value of flow resistance for the porous block. What this implies is, that the fluid will
experience the same resistance independent of the angle at which it flows through the block. Thus, the block represents
an isotropic material. To represent anisotropic materials, one can specify the resistance along three individual directions
within the porous material. To visualize this, we rotate the above coordinate system by 45 degrees around the z-axis and
prescribe a significantly decreased flow resistance along the x-axis of this rotated system, while the resistance along the
other axes remains the same. In the UCV, this may achieved by setting

DarcyConstant($MatUSER$) = ([0.1* &cDarcy& *equn{ $BlockIndicator$ }], 1, 1, 0, ... # Darcy constant in direction of
tilted x-axis

[&cDarcy& *equn{ $Blockindicator$ }], -1, 1, O, ... # Darcy constant in direction of tilted y-axis

[&cDarcy& *equn{ $Blockindicator$ }], 0, 0, 1) # Darcy constant in direction of original z-axis

Simulation results

We expect that, due to the decreased flow resistance along the tilted x-axis, the fluid should take a diagonal path through
the material. The simulation results below nicely visualize this aspect, with regions of high velocity at the lower left and
upper right corner of the porous material:

— 2.4e+01

velocity X

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - MultiPhaseCoupling - WaterSand

WaterSand
A jet of water and sand hits a plate

A jet of a water-sand mixture is hitting a plate under a skewed angle. The two-phase mixture is modeled with a one-sided
Darcy ansatz in the sense that the influence of the water on the sand is respected, but on the other hand the influence the
sand has on the water is neglected. The interaction between the sand particles is also neglected.

Darcy ansatz
Water and sand are set to be two different materials. The one-sided interaction between them is ensured by defining a

Darcy framework only for the sand phase. Defining two phases, for water the LIQUID solver is chosen, and the sand is
modeled in a DROPLETPHASE :

KOP(1) = LIQUID LAGRANGE V:IMPLICIT vp- T:NONE # phase 1: water
KOP(2) = DROPLETPHASE # phase 2: sand

The velocity of the surrounding water phase is projected onto the Darcy basis velocity for the sand phase:

33

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.MultiPhaseCoupling.PorousBlockAnisotropic

DarcyConstant($Mat2$) = equn{ DC_Sand }
DarcyBasisVelocity($Mat2$) = ([projY(1,%ind_v(1)%)], [projY(1,%ind_v(2)%)], [projY(1,%ind_v(3)%)])

See EquationsToSolve to understand how the Darcy ansatz is integrated into the conservation of momentum. The
DarcyBasisVelocity is the projected velocity of the water phase at the coordinates of a particular sand particle.

Monitor points

Monitor points are used to better track the behavior of the sand phase (see MONITORPOINTS). These points have no
influence on the actual simulation and are only used for postprocessing (see Monitor file after running the simulation or
look into the integration section of the USER_common_variables file). They are in general defined by user-defined
conditions. In our case, a monitor point is created every time a sand particle hits the plate.

MONITORPOINTS_CREATION ($Mat2$) = (%MONITORPOINTS_CREATION_AtBoundary% , equn{ $IsReflected$ }
) # if point is pushed back from the boundary, create a monitor point
MONITORPOINTS_CREATION_FunctionEvaluation ($Mat2$) = (%ind_addvar(1)% , equn{ vn }, %ind_addvar(2)% ,
equn{ vit }) # first index which is used for saving the following quantity

Because this quickly generates a lot of monitor points that slow down the simulation, there is a currently unused option at
the end of the USER_common_variables file that can be switched on to erase the monitor points in the time step after their
creation.

deletion of monitor points in the time step directly after creation
#MONITORPOINTS_DELETION($Mat2$) = (equn{ $mp_delete_in_next_ts$ })
#

auxilliary equations

#begin_equation{ $mp_delete_in_next_ts$ }

if (real(%RealTimeSimulation%) > Y %ind_st%) :: 1.0

#else :: 0.0

endif

#end_equation

Auxiliary adjustments

The movement of the sand phase is always disturbed to a small degree

COMP_DropletphaseWithDisturbance = 1 # small disturbance of all DROPLETPHASE points (for geometric disturbance
shortly after the inflow see below)
default: 0

and in particular directly after the inflow to achieve more realistic results

geometric disturbance of the sand points shortly after the inflow

REMARK: The geometric disturbance can be shut off by commenting the following event.

EVENT (6) = (equn{ $event_trigger_move_sand_point$ }, %EVENT_FunctionManipulation% , %ind_x(1)% , equn{
mv_x }, %ind_x(2)% , equn{ mv_y }, %ind_x(3)% , equn{ mv_z })

The velocity is scaled for purely numerical reasons; it prevents isolated points from reducing the time step too much with
high velocities.

scaling of velocity:

- water phase -> scaling of velocity only for isolated points (each velocity component is confined to the interval [-
&sc_v_ref& * &v_ref& , &sc_v_ref& * &v_ref&])

- sand phase -> scaling of all points (each velocity component is confined to the interval [- &sc_v_ref& * &v_ref& ,
&sc_v_ref& * &v_ref&])

REMARK: The scaling can be shut off by commenting the following events or adapting sc_v_ref or v_ref, respectively.
EVENT (1) = ([1.0], %EVENT_FunctionManipulation% , %indU_flagged v1%, 0.0, %indU_flagged_v2%, 0.0,
%indU_flagged_v3%, 0.0)

EVENT (2) = (equn{ $event_trigger v1$ }, %EVENT_FunctionManipulation% , %ind_v(1)% , equn{ $scaled_v1$ },
%indU_flagged_v1%, 1.0)

EVENT (3) = (equn{ $event_trigger v2$ }, %EVENT_FunctionManipulation% , %ind_v(2)% , equn{ $scaled_v2$ },
%indU_flagged_v2%, 1.0)

EVENT (4) = (equn{ $event_trigger v3$ }, %EVENT_FunctionManipulation% , %ind_v(3)% , equn{ $scaled_v3$ },
%indU_flagged_v3%, 1.0)

34

Simulation results

A look into some mid-simulation results shows clearly the different behavior of the two phases after hitting the plate. While
the water phase (blue) is beginning to cover the plate in all directions, the sand phase (red) resists, due to its higher
density, such a change in direction of its movement much stronger.

COMPREHENSIVE EXAMPLE

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - SimulationSplittingWithMEMORIZE

2.3.4. SimulationSplittingWithMEMORIZE

usage of the MEMORIZE-feature to split a simulation
Simulation splitting based on MEMORIZE :
« A water cube falls due to gravity in z-direction. Points passing a certain z-limit are saved and deleted by
MEMORIZE_Write .

« The saved points are read in during the second simulation by MEMORIZE_Read . In the end, the water cube is
falling as a whole again in z-direction.

Note: With this procedure, different geometries can be analyzed.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing

2.3.5. WaterCrossing

Solve selected test cases in the field of water crossing simulations

Examples showing the capabilities of MESHFREE in water crossing applications.

List of members:

SimpleBox SimpleBox

35

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.MultiPhaseCoupling.WaterSand/
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.MultiPhaseCoupling.WaterSand
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.SimulationSplittingWithMEMORIZE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox

SimpleBox

List of members:

Classical simple box driving through a channel of water
FeederCutter simple box driving through a channel of water
IncreasingNumberOfPoints simple box driving through a channel of water, after a number of time cycles, the

point cloud becomes denser

DifferentTypesOfPressureBoundary DifferentTypesOfPressureBoundaryConditions
Conditions

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox - Classical

Classical
simple box driving through a channel of water

A box of 5 meters length, 2 meters width, and 1 m height is driven with constant velocity through a water channel, 20
meters long.

The water height in the channel is 1 meter, the box half-dived into the water.
By movement, it forms a breaking front wave.
For convenience, the two input files of this example are linked into this page in order to easily navigate to the functionalities

used.

See especially:
%POINT_APPROXIMATE% as a means of retrieving function values at nodes points of the geometry.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox -
DifferentTypesOfPressureBoundaryConditions

DifferentTypesOfPressureBoundaryConditions

List of members:

NonQuasiStationa various instances of simple box driving through a channel of water, apply differnet pressure BC at
ry each instance

QuasiStationary various instances of simple box driving through a channel of water, apply differnt pressure BC at each
instance

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox -
DifferentTypesOfPressureBoundaryConditions - NonQuasiStationary

NonQuasiStationary

36

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterCrossing.SimpleBox.Classical

various instances of simple box driving through a channel of water, apply differnet pressure BC at each instance

Non-quasistationary mode: BOX moves with user given velocity, POOL is at rest.
Besides this, the input files of this example and the ones of QuasiStationary are absolutely identical.

Start several instances of the classical box-in-channel example:

A box of 5 meters length, 2 meters width, and 1 m height is driven with constant velocity through a water channel, 20
meters long. The water height in the channel can be set by the user (default 1m), the box half-dived into the water. By
movement, it forms a breaking front wave.

The problem is copied several times. Each copy runs in a different chamber. In each chamber, we apply a dedicated type
of boundary condition for the dynamic pressure. The dynamic pressure %ind_p_dyn% is measured at monitor points at the
front of the box and written to a .timestep file.

I ncommon_variables, study the behavior of the boundary condition
BoundaryConditions.BCON.%ind_p_dyn%.%BND_none% based on the choice of FLIQUID_ConsistentPressure_Version .

List of members:

USER_common_variables simple box driving through a channel of water: USER_common_variables.dat
Ucv_SinglePoolWithBox simple box driving through a channel of water: Ucv_SinglePoolWithBox.dat
common_variables simple box driving through a channel of water: common_variables.dat

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox
DifferentTypesOfPressureBoundaryConditions - QuasiStationary

QuasiStationary
various instances of simple box driving through a channel of water, apply differnt pressure BC at each instance

Quasistationary mode: BOX remains at its original position, POOL moves with the user-given box speed.
Besides this, the input files of this example and the ones of NonQuasiStationary are absolutely identical.

Start several instances of the classical box-in-channel example:

A box of 5 meters length, 2 meters width, and 1 m height is driven with constant velocity through a water channel, 20
meters long. The water height in the channel can be set by the user (default 1m), the box half-dived into the water. By
movement, it forms a breaking front wave.

The problem is copied several times. Each copy runs in a different chamber. In each chamber, we apply a dedicated type
of boundary condition for the dynamic pressure. The dynamic pressure %ind_p_dyn% is measured at monitor points at the
front of the box and written to a .timestep file.

UNlike in the NonQuasiStationary example, here we are allowed to set FLIQUID_ConsistentPressure_Version = 1127 (i.e.
use a 1 in the second digit), and the pressure values at the front face of "box" still are in the right order of magnitude, even
with %BND _none% .

37

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterCrossing.SimpleBox.DifferentTypesOfPressureBoundaryConditions.NonQuasiStationary

List of members:

USER_common_variables simple box driving through a channel of water: USER_common_variables.dat
Ucv_SinglePoolWithBox simple box driving through a channel of water: Ucv_SinglePoolWithBox.dat
common_variables simple box driving through a channel of water: common_variables.dat

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox - FeederCutter

FeederCutter
simple box driving through a channel of water

The same case as SimpleBox .
However, in order to save computation time, we cut the long pool of
water in front of and behind the vehicle.

The feeder and cutter utilities are implemented in a general way, the can be

treated like functions or subroutines in a normal programming language, therefore see especially:
include_Ucv{}, and its optional feature

parameters{ }

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterCrossing - SimpleBox -
IncreasingNumberOfPoints

IncreasingNumberOfPoints
simple box driving through a channel of water, after a number of time cycles, the point cloud becomes denser

A box of 5 meters length, 2 meters width, and 1 m height is driven with constant velocity through a water channel, 20
meters long.

The water height in the channel is 1 meter, the box half-dived into the water.
By movement, it forms a breaking front wave.
after 200 time cycles, the number of MESHFREE points is subject to steady increase.

For convenience, the two input files of this example are linked into this documentation in order to
easily navigate to the functionalities used.

List of members:

USER_common_variables simple box driving through a channel of water: USER_common_variables.dat

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - SpecialCases - WaterManagement

38

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterCrossing.SimpleBox.DifferentTypesOfPressureBoundaryConditions.QuasiStationary
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterCrossing.SimpleBox.FeederCutter
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterCrossing.SimpleBox.IncreasingNumberOfPoints

2.3.6. WaterManagement

Solve selected test cases in the field of water management simulations
Examples showing the capabilities of MESHFREE in water management applications.

List of members:

RainOnSimplePlate simple rain source

MESHFREE - GettingStarted - SpecialCases - WaterManagement - RainOnSimplePlate

RainOnSimplePlate
simple rain source

Study different aspects like volume control.

List of members:

SophisticatedVolumeControl study a rain source with sophisticated volume control

MESHFREE - GettingStarted - SpecialCases - WaterManagement - RainOnSimplePlate -
histi Volum ntrol

SophisticatedVolumeControl
study a rain source with sophisticated volume control

The key point here ist to study the volume correction in detail. DropletSource geneerated droplets which fall on a plate.
Then, the water slides down the plate and piles up at a sidewise wall, which acts as an obstacle for the water.
« After collision with the wall, burst into isolated MESHFREE points. Here, volume conservation is crucial.
« At the dam, again volume conservation becomes crucial, as the water collides with the wall initially as a very thin
layer.
« The water flow is cut below the geometry by an EVENT statement, here another time volume conservation becomes
crucial, because the volume packages of the MESHFREE points deleted are weak, but fully go into the computation
of the target volume.

So, volume correction is essential in this example. We study four cases:
« SLIP condition with classical point cloud organization along the walls
« NOSLIP condition with classical point cloud organization along the walls
« SLIP condition with EXTENDED point cloud organization along the walls
« NOSLIP condition with EXTENDED point cloud organization along the walls

EXTENDED point cloud organization is currently experimental and is invoked in common_variables.dat by the line
who_am_| ="'FLSLIP'

The volume correction is based an a Ucv-implementation. The main file is Ucv_VolumeCorrection .
This procedure will perform the volume correction in a similar way as the parameters VOLUME_correction and

VOLUME_ correction_FreeSurface would do.

The Ucv_VolumeCorrection uses another procedure Ucv_ComputeAdaptedTargetVolume , which limits the volume per
time the can be deleted by EVENT or METAPLANES and recomputes the adapted target volume.

39

List of members:
Ucv_VolumeCorrection implementation of the volume correction as a Ucv-procedure

Ucv_ComputeAdaptedTargetVolume recompute the target volume due to a given maximum volume flux

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial

2.4. Tutorial

simple, comprehensive examples in 3D

« Each tutorial covers several important features of MESHFREE .
« We suggest a Linux system. If working under Windows, please consider installing a virtual machine.
e To run MESHFREE , have a look at MESHFREE.InstallationGuide.Execute .
« The tutorials are ready to run. No preprocessing is necessary in the first place.
Nevertheless, play around with the parameters given in the input files.
« See Download for archives of example setup suites.

List of members:

tut3d_00 TUTORIAL 0: Checking the geometry

tut3d_01 TUTORIAL 1: flow in a simple tube

tut3d_02 TUTORIAL 2: flow out of a tank

tut3d_03 TUTORIAL 3: flow in open channel with obstacle

tut3d_04a TUTORIAL 4: flow around a cylinder with local refinement

tut3d_04b TUTORIAL 4b: flow around a cylinder with local refinement (geometry-based)
tut3d_05 TUTORIAL 5: flow around a MOVING cylinder with MOVING local refinement
tut3d_06 TUTORIAL 6: flow around a periodically moving cylinder

tut3d_07 TUTORIAL 7: boiling flow in a bowl

tut3d_08 TUTORIAL 8: simple pressing process

tut3d_09 TUTORIAL 9: simple floating process

tut3d_10 TUTORIAL 10: simple rolling process

MESHFREE - GettingStarted - Tutorial - tut3d 00

2.4.1. tut3d_00

TUTORIAL 0: Checking the geometry

Goals of this Unit

« Getting to know the requirements for geometry.

40

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.SpecialCases.WaterManagement.RainOnSimplePlate.SophisticatedVolumeControl

« Determination of the orientation of surfaces and lines as well as the definition of filling processes.

« Parameter SimCut in common_variables.dat.

« How to check the boundary normals.

The setting for this tutorial is found in the folder tut3d_00 .

Geometry files for MESHFREE

Usually, one of the first things to do in setting up a MESHFREE simulation is to check the geometry. In MESHFREE , the

major available geometry formats are:
« sil
« 0obj
e msh
- fdneut

MESHFREE requires
« the geometry to be "watertight",

« the geometry to have consistently oriented normals,
« each part of the geometry to be uniquely labeled.

Exercises

In our example, we have the geometry file cube.msh containing a cube with the six faces labeled "top", "bottom", "in", "out",

"back", and "front".

$MeshFormat
2208

$ EndMeshFormat
$PhysicalNames
6

21 "top"

2 2 "bottom"
23"in"

2 4 "out"

2 5 "back"

2 6 "front"

$ EndPhysicalNames

It is included into the simulation model in USER_common_variables.dat by:
include{ cube.msh}, scale{ 1, 1, 1}, offset{ -0.5,-0.5,0}

The geometry can be modified by GeometryManipulations such as scale{ or offset{ . What about the pointcloud and the
generation of the point cloud? If we are not sure about the orientation of the boundary elements, we can use the option

SimCut =4

in common_variables.dat, the initial point cloud generation stops after 4 cycles of the point filling procedure. The program
is then stopped for checking the result of the initial filling. This might for example yield the configuration in Figure 1. If the
orientation of some boundary partition is wrong (picture left), we see that the point cloud is generated on the wrong side.

. o,
.....

Figure 1: Wrong (left) and correct (right) point
cloud generation with SimCut option turned
on

41

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_00

Exercise 1 : Play around with the SimCut parameter. Execute the setting as it is and view the result in ParaView. Does the
geometry fulfill the MESHFREE requirements?

We would expect the cube to be filled completely, but somehow points get filled outside the domain.

Exercise 2 : In MESHFREE , the interior points are filled in filling cycles startig from the boundary. In order to know in
which direction to start, the orientation of the boundary normals is crucial. By convention, the boundary normals point into
the flow domain.

Usually, we do not save them for memory reasons, but you can specify that they are written to the boundary elements
result file by modifying the SAVE_format in USER_common_variables.dat to

SAVE_format (1) = 'ENSIGHT6 BINARY NN-T'

Rerun MESHFREE and check the BE_tut3d_0.case file in ParaView. What do you observe?

Figure 2: Boundary elements with normal
information

k)
o]
Q
X
3]
ko]
5}
2
s

The "front" face normal is oriented outwards, and all other face normals are oriented inwards.

Exercise 3 : How can you modify the example such that the filing of MESHFREE points will be correct? Check out the
keyword REV_ORIENT in the documentation. Verify your guess by commenting the parameter SimCut : the simulation
should then start normally.

Note: In order to reproduce Figure 2, load the state file tut00_figure2.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d_01

2.4.2. tut3d_01

TUTORIAL 1: flow in a simple tube
42

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_00

Goals of this Unit:
« Setting up of a flow problem “simple channel flow”
« The most important parameters in the file common_variables.dat
e The parameters v-- , vp- and COEFF_dt_virt
« How to define boundaries and aliases in 3D examples

Formation of geometry:
The geometry for this tutorial can be seen in cube.geo in the folder tut3d_01 .

The fluid-mechanical problem:

Figure 7: sketch of simulation

The first example is a simple channel flow. At the inlet on the left hand side we assume a constant velocity. There is no
velocity at the walls (no-slip boundary condition at the bottom, top, back and front wall). Further there is no gravity present
and the pressure at the outlet on the right hand side is zero.

Boundary conditions are defined in the following way at USER_common_variables.dat:

BC_T ($wall$) = (%BND_ROBIN%, 10.0, 500.0, 0.3) # BC_T (xyz) = (%BND_CAUCHY%, alpha, TO,
inertialThickness), i.e. CAUCHY: lambda*dT/dn = alpha*(T-TO)

BC_T (in) = (%BND_DIRICH% , 1500.0) # BC_T (xyz) = (%BND_DIRICH% , T0) , i.e. fix the temperature at
the boundary to a value of TO

BC_T (out) = (%BND_ROBIN%, 0.0, 500.0) # Cauchy condition, see above. This condition mimics a pure insulatoin
boundary

BC_T ($wallt$) = (%BND_ROBIN%, 10.0, 500.0, 0.3) # Cauchy condition, see above

BC_p ($wall$) = (%BND_wall%) # standard wall pressure condition

BC_p (in) = (%BND_wall%) # for pressure BC , inflow and wall boundaries behave in the same way

BC_p (out) = (%BND_DIRICH% , 0.0) # fix the pressure to be 0 at the outlfow boundary

BC_p ($wallt$) = (%BND_wall%) # standard wall pressure condition

BC_v ($wall$) = (%BND_wall_nosl%) # standard noslip condition at lower wall

BC_v (in) = (%BND_inflow% , [&v0&], 0, 0) # inflow velocity prescribed

BC_v (out) = (%BND_NEUMANN% , 0,0,0) # standard Neumann condition at the outflow (i.e. keep the velocity
free, but fix dv/dn=0)

BC_v ($wallt$) = (%BND_wall_nosl%) #(%BND_slip%) # classical noslip conditions

BCON ($wall$, %ind_p_dyn%) = (%BND_wall%) # standard wall pressure condition

BCON (in , %ind_p_dyn%) = (%BND_AVERAGE%) # for pressure BC , inflow and wall boundaries behave in the
same way

BCON (out , %ind_p_dyn%)

(%BND_DIRICH% , 0.0) # fix the pressure to be 0 at the outlfow boundary
BCON ($wallt$, %ind_p_dyn%) =

(%BND_wall%) # standard wall pressure condition

)

43

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_01

In the Alias Section

begin_alias{ "BoundaryElements"}

"bottom" = " BC$wall$ ACTIVESinit_always$ IDENT%BND_wall_nos|% MAT$MatUSER$ TOUCH%TOUCH_always%

MOVENO_MOVE CHAMBERT " #

"in" =" BCin ACTIVESinit_always$ IDENT%BND_inflow% MAT$MatUSER$ TOUCH%TOUCH_always%

MOVENO_MOVE CHAMBER1 POSTPROCESSPP_IN " #

"out" = " BCout ACTIVESinit_always$ IDENT%BND_outflow% MAT$MatUSER$ TOUCH%TOUCH_always%

MOVENO_MOVE CHAMBER1 POSTPROCESSPP_OUTS " #

"top" = " BC$wallt$ ACTIVESinit_always$ IDENT%BND_wall_nosl% MAT$MatUSER$ TOUCH%TOUCH_always%

MOVENO_MOVE CHAMBERT " #

"front" = " REV_ORIENT BC$wallt$ ACTIVESinit_always$ IDENT%BND_wall_nos|% MAT$MatUSER$

TOUCH%TOUCH_always% MOVESNO_MOVE CHAMBER1 " #

"back" = " BC$wallt$ ACTIVESinit_always$ IDENT%BND_wall_nos|% MAT$MatUSER$ TOUCH%TOUCH_always%

MOVENO_MOVE CHAMBERT " #

"dummyPoint"= " ACTIVES$init_always$ MOVENO_MOVE CHAMBER1 SMOOTH_LENGTHP_0 " #
"dummyPoint2"= " ACTIVES$init_always$ MOVENO_MOVE CHAMBER1 SMOOTH_LENGTHP_0 " #

end_alias

we have to define all parts of the geometry as read-in in the boundary element section.

The next picture exhibits the generation time of each particle after a certain number of simulation cycles have been

completed.

AR S T L D
IR IR
SEREEER T} X RN Py
SRR ISR R AL
EERRE 8 B1 F NI
SRR SR RY S IR
R TR TR
R TN LR X
RO LT LR DRER TR

Generation Time

9.81

/.36

4.90

2.45

0.00

Figure 9: particle generation time after some

simulation cycles elapsed

The computation was done using the Lagrange method which we have specified by writing the LAGRANGE flag in the first

line
KOP(1) = LIQUID LAGRANGE IMPLICIT vp-

of “USER_common_variables.dat”. In this example the particles move with the fluid velocity. On the contrary the Euler
method (specified by using the keyword EULERIMPL instead of LAGRANGE) leaves the particle cloud fixed. In general
the Euler method works fine for stationary flows whereas the Lagrange method is more suitable for transient problems. The

difference between these two methods can be seen by watching the animation in ParaView with the “Points of Surface
representation turned on (this shows the particles).

»

The option flags “IMPLICIT” and “vp-" specify the penalty scheme for the implicit formulation, see vp- . The coupling of the
simultaneous computation of velocity and pressure is controlled by the COEFF_dt virt value in “common_variables.dat”.
COEFF_dt_virt represents the factor A in the scheme for the virtual time step size At,;,; - The highest coupling is given
for COEFF_dt_virt=0.0, because then we explicitly demand 7Ty — () , however the linear solver might not converge for
such strong request. For values of COEFF_dt virt bigger than zero, we penalize values of VTv # 0 with a certain
pressure. Higher values indicate less coupling (penalizing), which can be necessary if the linear solver does not converge

44

well. COEFF_dt_virt=0.1 is usually a good choice, already leading to very satisfactory results with invisible com

For Reynolds numbers of order 0.1 or greater we can also use the Chorins reprojection scheme. The corresponding flag is

v--", see v-- . However the scheme v-- becomes unstable if COEFF_dt_virt is chosen too small, so in case of unstable
results, this value should be increased.

The Reynolds number for this problem is in the order of magnitude of 1. Consequently the computation works fine with

both methods.

Suggestions for exploring FPM:
« play around with the smoothing length (SMOOTH_LENGTH) -> use more or fewer MESHFREE points
« check vp- and v--
« especially check v-- for smaller and smaller Re-numbers (increase eta)
« in the boundary elements section, try to make the tube longer by scaling it, for example, in the x-direction

Advanced Example: flow in a Y _piece (recommended after successfull training according to the basic units)

Note: In order to reproduce Figure 7, load the state file tut01_figure7.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

List of members:

Y_piece flow in a Y-piece

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 01 - Y_piece

Y_piece
flow in a Y-piece

INTEGRATION -statements are introduced to measure the mass flows through the two inflows and the outflow.
VOLUME_ correction is switched on to reduce mass loss.

MESHFREE - GettingStarted - Tutorial - tut3d 02

2.4.3. tut3d_02

TUTORIAL 2: flow out of a tank

Goals of this unit:

« free surfaces with boundary conditions in 3D,

« formation of a proper jet,

« controlling the jet (preventing infinite jet),
introduction of the gravity vector and other material properties,
activation and material specification in the alias-section.

The fluid-mechanical problem

This example shows a flow with free surface. The level of the fluid is decreasing in the draining tank because of a circular
hole at the front face of the geometry, where a fluid jet will evolve. In Figure 10, geometry has been rotated such that the
user can see the outlet at the bottom right side. The velocity and the flow rate of the jet depend on the depth of the fluid.

45

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_01

Figure 10: sketch of the simulation

In Figure 10, we observe the outer container (covered by brown points), that encloses the fluid geometry. This container
was created to cut the jet, ejected from the orifice hole, and will prevent the formation of an infinite jet. The boundaries of
this outer container have been defined in the alias-section in the following way:

"cut_side" = " BC$outflow$ ACTIVES$noinit_always$ IDENT%BND _outflow% MAT$MatUSER$
TOUCH%TOUCH_liquid% MOVENO_MOVE CHAMBER1 POSTPROCESSPP_OUTS "

"cut_bottom" =" REV_ORIENT BC$outflow$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$MatUSER$
TOUCH%TOUCH_liquid% MOVENO_MOVE CHAMBER1 POSTPROCESSPP_OUTS"

Free surface detection
As the setting contains free surfaces, we turn on the free surface detection by setting the parameter compute_FS to "YES"
in either the USER_common_variables or the common_variables file:

Set parameter compute_FS="YES' either in Ucv or cv to turn on detection of free surfaces:
compute_FS ="'YES'

Consistent geometry:

The MESHFREE points of the jet through the outlet orifice would be deleted, if they would see any geometry part from its
back-side. So, to get rid of this situation, one must prepare the geometry in such a way that any point can uniquely
determine its inside/outside status regarding the geometry model (boundary elements). Figure 11 shows the proper
geometry modeling (inner AND outer skin of the tank).

46

Figure 11: geometrical setup of the problem

The outer skin prevents MESHFREE points from being deleted once they pass through the orifice hole. The outer skin of
the tank is defined by:

"plane1" =" BC$wall$ ACTIVES$noinit_always$ IDENT%BND_slip% MAT$MatUSER$ TOUCH%TOUCH_liquid%
MOVENO_MOVE CHAMBER1 "
"plane2" = " BC$wall$ ACTIVE$noinit_always$ IDENT%BND_slip% MAT$MatUSER$ TOUCH%TOUCH_liquid%
MOVENO_MOVE CHAMBER1 "

Flow and boundary conditions
In order to provoke the flow through the orifice hole (driven by hydrostatic pressure), we introduce the gravity vector:

gravity($MatUSERS$) = (0.0, -9.81, 0.0)

The gravity vector (body forces) is a physical property of the specified material $MatUSERS. It is listed in the
“USER_common_variables.dat” together with the other material properties such as density, viscosity and initial
temperatures.

The relevant boundary conditions are
BC_p (0) = (%BND_free%) # fallback for free surfaces

BC_p ($free0$) = (%BND_free%)
BC_p (out) = (%BND_DIRICH% , 0.0)
BC_p ($wall$) = (%BND_wall%)

(

BC_p ($outflow$) = (%BND_wall%)

#BC_v - velocity conditions

BC_v (0) = (%BND_free% ,0,0,0,0.3) # fallback for free surfaces

BC_v ($free0$) = (%BND_free% ,0,0,0,0.3) # the last number 0.3 is the inertial thickness, i.e. incorporate inertial
forces into the free surface boundary conditions, see FPMDOCU

BC_v (out) = (%BND_outflow%)

BC_v ($wall$) = (%BND_slip% ,0,0.3)

BC_v ($outflow$) = (%BND_NEUMANN% , 0.0, 0.0, 0.0)

#BCON_pCorr - dynamic pressure conditions

BCON (0,%ind_p_dyn%) = (%BND_free%) # fallback for free surfaces
BCON ($free0$,%ind_p_dyn%) = (%BND_free%)

BCON (out ,%ind_p_dyn%) = (%BND_DIRICH% , 0.0)

BCON ($wall$,%ind_p_dyn%) = (%BND_wall%)

BCON ($outflow$,%ind_p_dyn%) = (%BND_wall%)

The boundary index flag $free0$ defines the boundary conditions at the free surface. In the ALIAS section, the top wall is
47

specified by the flag ACTIVE $free_surface$ (see below), which means, that the border is active during pointfilling and
preparation, after start-up it is switched off, turning all points belonging to "top" automatically into free surface points.

"top" = " BC$free0$ ACTIVESfree_surface$ MAT$MatUSER$ CHAMBER1 "

Typically there are at least the following three ACTIVE statements present:

ACTIVE ($init_always$) = (%ACTIVE_init% , %ACTIVE_always%)
ACTIVE ($free_surface$) = (%ACTIVE_init%)
ACTIVE ($noinit_always$) = (%ACTIVE_noinit% , %ACTIVE_always%)

The ACTIVE ($init_always$) flag is used for walls which are initially filled and are active throughout the computation. For
walls which are not active initially but might come into contact with the fluid (and thus become active) the ACTIVE
($noinit_always$) flag is defined. Finally ACTIVE ($free_surface$) specifies surfaces which are initially filled with points
and then immediately switched to the free surface boundary condition.

Use temperature to colorize the material
We use the temperature to simply colorize the material (choosing very small heat conductivity) and isolation boundary
conditions:

BC_T (0) = (%BND_ROBIN%, 0.0, 0.0, 0.3) # fallback for free surfaces
BC_T ($free0$) = (%BND_ROBIN%, 0.0, 0.0, 0.3)

BC_T (out) = (%BND_ROBIN%, 0.0, 0.0, 0.3)

BC_T ($wall$) = (%BND_ROBIN%, 0.0, 0.0, 0.3)

BC_T ($outflow$) = (%BND_ROBIN%, 0.0, 0.0, 0.3)

The temperature is initialized due to the y-component of their initial positions:
INITDATA ($MatUSERS$,%ind_T%) = [Y %ind_x(2)%] # colorize/initialize temperature by y-values

Output files

In the result folder, MESHFREE will generate two kinds of files. The result file starting with BE_... contains the boundary
elements. With this, the user has a feedback, how FPM interpreted the geometry from the input files given in the
begin_boundary_elements{} environment. The other result file contains the pointcloud together with the result items
defined in the SAVE_ITEM section.

The user can check the “free surface particles” by observing the pointcloud result file with (item "KOB"), as shown in Figure
10, there red particles are free surface particles.

For this tutorial we have chosen special output such that deactivated particles can be seen in ParaView. The activation
status can be checked using the item “Activation” which is 0 if the particle is deactivated or it shows the number of time
cycles it has been activated without interruption.

Use outer boundary as wall

As an option, the user can switch the fluid behavior at the outflow-box by changing the boundary conditions from $outflow$
to $wall$. In this case, the jet becomes reflected as if the outer box was a wall, the liquid will flow down along the wall due
to the given gravity. See the commented lines:

#"cut_side" = " BC$wall$ ACTIVES$noinit_always$ IDENT%BND_slip% MAT$MatUSER$ TOUCH%TOUCH_liquid%
MOVE$NO MOVE$ CHAMBERT "

#"cut_bottom" =" REV_ORIENT BC$wall$ ACTIVE$noinit_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

Suggestions to explore MESHFREE :
« play with the interaction radius SMOOTH_LENGTH
« switch the boundary conditions of the out bounds from outflow to solid wall conditions

Note: In order to reproduce Figures 10 and 11, load the state files tut02_figure10.pvsm and tut02_figure11.pvsm in
ParaView and choose 'Search files under specified directory'. Then, select the correct data directory (MESHFREE results
folder).

48

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d_03

2.4.4. tut3d_03

TUTORIAL 3: flow in open channel with obstacle

Goals of this Unit:
« Discussion of “open Edges”.
- Understanding the normals and volume relation (while making geometry with GMSH).

The fluid-mechanical problem:

In this example the fluid flows around a cylinder and generates a small hump at the free surface. Now we have to take into
account that the height of the fluid at the outflow wall is not fixed and might vary in time. In particular it might overflow the
original box. In order to avoid that the fluid flows over an edge of thickness zero we have to extend the geometrical model
(which is called roof in the formation of the geometry). We briefly have a look at the changes needed to be done in
USER_common_variable.dat.

Figure 12: sketch of the problem

It can be easily observed that the roof above the cube is necessary to provide proper closing of the geometry in order to
avoid that the fluid flows over the wall.

Healing wrong orientation of geometry items:

While defining aliases in USER_common_variable.dat, boundaries whose orientation is wrong, need to be equipped with
the flag REV_ORIENT . If you are working with GMSH, the boundary orientation can be easily seen if displaying the
normals of the geometry:

49

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_02

Figure 13: showing orientations and
directions of the normals

Plane 106
Physical Surface 11
oof top
- Surface 104 -t Surface 100
Physical Surface 15 Physical Surface 14
roof_in roof_out
Plane 88

Physical Surface &
Tee

face~Hurface 11

- Surface 74 ig¥er 2Vlinder 1 - Surface 86
Physical Surface 1 - - Physical Surface 2
in ghirface 65 out

Surface 70

Physical Surface 5
ottom

If working with different preprocessing tools, usually there is a way to display boundary orientations in most of the systems,
sometimes however not easy to find. Figure 13 shows the front look of the 3D geometry of this tutorial and also the
normals of the surface of the cylinder (please observe the inconsistent formation of the boundary normals, the normals
always how to point to the interior of the flow domain, however GMSH displays the normals the other way around
)- Thus, for the appropriate face, we turn around the orientation by REV_ORIENT :

"cylinder_1" = " BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip% MAT$MatUSER$ TOUCH%TOUCH_always%
MOVENO_MOVE CHAMBER1 "

"cylinder_2" =" REV_ORIENT BC$wallCyl$ ACTIVES$init_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH_always% MOVENO_MOVE CHAMBER1 "

"cylinder_3" =" REV_ORIENT BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH_always% MOVENO_MOVE CHAMBER1 "

"cylinder_4" =" REV_ORIENT BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH_always% MOVENO_MOVE CHAMBER1 "

Closing the geometry on the top:
The “roof” should not contribute in the formation of the point cloud, therefore, the aliases of these walls should be for

example defined as follows :

"roof_in" = " BC$free0$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVE$NO MOVE$ CHAMBERT1 "

"roof_out" =" REV_ORIENT BC$free0$ ACTIVES$noinit_always$ IDENT%BND _outflow% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVE$NO MOVE$ CHAMBERT1 "

"roof _back" =" REV_ORIENT BC$free0$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVE$NO MOVE$ CHAMBERT1 "

"roof_front" =" BC$free0$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVE$NO MOVE$ CHAMBERT1 "

"roof_top" =" REV_ORIENT BC$free0$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVE$NO MOVE$ CHAMBERT1 "

The ACTIVE statement in the alias definition is ACTIVE $noinit_always$ which tells MESHFREE that this boundary shall
not be active during MESHFREE initialization/startup, but has to be active during time integration/simulation.

50

Suggestions for exploring MESHFREE :
« work with more or less MESHFREE points by adapting the smoothing length
- work with different speeds of the liquid

Advanced Example: FormationFreedJet (recommended after successfull training according to the basic units)

Note: In order to reproduce Figure 12, load the state file tut03_figure12.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

List of members:

FormationFreeJet formation of a free jet

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 03 - FormationFreelJet

FormationFreedJet
formation of a free jet

A flow through a pipe forms a free jet at the end of the pipe. The free jet hits an inclined plate. The usage of the Selection -
feature to control the simulation setup is demonstrated.

MESHFREE - GettingStarted - Tutorial - tut3d 04a

2.4.5. tut3d_04a

TUTORIAL 4: flow around a cylinder with local refinement

Goals of this Unit:
« Problem Specific Variation of the Smoothing Length (and thus the Particle Density)

The fluid-mechanical problem
The fluid mechanical problem and the geometrical setting remains the same as in Tutorial tut3d_03 . However, it might be
desirable to have a denser particle cloud around the obstacle in the center of the flow in 3D.

51

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_03

Figure 14: Local pointcloud refinement
around the cylinder

In order to use a variable, locally refined smoothing length (which determines the particle density) the keyword 'DSCR' is
needed.

In this example, the smoothing length is of a cylindrical distributed density around a line/axis running through a given point.
The point is defined by (especially check the SMOOTH_LENGTH -flag):

BND_point &hPoint& 0.5 0.5 0.0 # create a point in the middle of the cylinder

"hPoint" = "SMOOTH_LENGTHP_0 ACTIVESinit_always$ MOVENO_MOVE CHAMBER1 "

The smoothing length about the flagged point is defined by:

USER_h_funct = 'DSCR'
SMOOTH_LENGTH ($P_0%$) = (%H_radial% , 0.07, 0.1, 0,0,1, 0.2, 0.3)

Have a look in the SMOOTH_LENGTH documentation to see the full spectrum of defining locally refined smoothing length
(interaction radius).
In our special case here, we use %H_radius%, allowing to refine around a given axis.

Here the minimum smoothing length at the cylinder is the first parameter, which is kept at this value in a close
neighborhood around the axis (second parameter). The axis of the cylinder is the line going through the point P_0 with
direction vector (0,0,1) (third to fifth parameter). Outside this cylinder, the smoothing length increases with the given
increase rate up to the maximum allowed smoothing length (last two parameters).

Suggestions to explore FPM
« play around with the parameters in the smoothing length definition,
« use additional sources of refinements (i.e. generate additional BND_point and define a refinement about it),
« go on to example tut3d_04b in order to see how to attach refinement around existing geometry (for example the
cylinder).

Note: In order to reproduce Figure 14, load the state file tut04_figure14.pvsm in ParaView and choose 'Search files under

specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 04b

2.4.6. tut3d_04b

52

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_04a

TUTORIAL 4b: flow around a cylinder with local refinement (geometry-based)

Goals of this Unit:
« attach local refinement to existing geometry items (e.g. the cylinder)

The fluid-mechanical problem

The fluid mechanical problem and the geometrical setting remains the same as in Tutorial tut3d_03 and tut3d_04a .
However, it might be desirable to have a denser particle cloud around the obstacle in the center of the flow in 3D and save
computation time by thinning out the point cloud far away from the cylinder. In contrast to tut3d_04a , the local refinement
of the pointcloud is not prescribed by a virtual axis, but the smoothing length is attached to existing geometrical entities.

Figure 14: Local refinement of the pointcloud
around the cylinder

In order to use a variable, locally refined smoothing length the keyword 'DSCR' is needed.
In this example, the local refinement is attached to the "cylinder"-geometry items given by the geometry. For this, the
appropriate elements have to be flagged with the SMOOTH_LENGTH flag:

"cylinder_1" =" SMOOTH_LENGTHP_0 BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH_always% MOVENO_MOVE LAYERO CHAMBERT1 "

"cylinder_2" =" SMOOTH_LENGTHP_0 REV_ORIENT BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip%
MAT$MatUSER$ TOUCH%TOUCH_always% MOVENO_MOVE LAYERO CHAMBER1 "

"cylinder_3" =" SMOOTH_LENGTHP_0 REV_ORIENT BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip%
MAT$MatUSER$ TOUCH%TOUCH_always% MOVENO_MOVE LAYERO CHAMBER1 "

"cylinder_4" =" SMOOTH_LENGTHP_0 REV_ORIENT BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip%
MAT$MatUSER$ TOUCH%TOUCH_always% MOVENO_MOVE LAYERO CHAMBER1 "

For the boundary elements, flagged with the SMOOTH_LENGTH flag, we define the local refinement by

USER_h_funct = 'DSCR’
SMOOTH_LENGTH (P_0) = (%H_spherical% , 0.07, 0.1, 0.2, 0.3)

Have a look in the SMOOTH_LENGTH documentation in order to have the full spectrum of defining locally refined
smoothing length (interaction radius).
In our special case here, we use %H_spherical% , allowing to refine around a point, axis, or geometry.

Here the minimum smoothing length at the cylinder is the first parameter, which is kept at this value in a close
neighborhood around the axis (second parameter). Outside this close neighborhood, the smoothing length increases with
the given increase rate up to the maximum allowed smoothing length (last two parameters).

Suggestions to explore FPM
« play around with the parameters in the smoothing length definition

« try to attach the smoothing length to other boundary items
53

Note: In order to reproduce Figure 14, load the state file tut04_figure14.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d_05

2.4.7. tut3d_05

TUTORIAL 5: flow around a MOVING cylinder with MOVING local refinement

Goals of this Unit:
« Movement of Walls and associated movement of local refinement

The fluid-mechanical problem
Again the fluid mechanical setting remains the same as in the two previous examples. The only difference will be the
movement of the cylinder in the center of the channel.

Time: 0.929480 Time: 1.871700 Figure 15: Moving Cylinder perturbing the
Fluid Flow

The main tool to move walls, bodies and other geometry elements such as points for smoothing length definitions is the
MOVE flag to be given in the alias definition. If we want to move the cylinder in vertical direction, we include the following
MOVE statement:

MOVE ($MOVE_circle$) = (%MOVE_velocity% , 0.0, 0.3, 0)

Instead if we want to move the cylinder in the x-y-plane with the velocity 0.9 in each direction (x and y) then we may use
the MOVE statement in the following way

MOVE ($MOVE_circle$) = (%MOVE_velocity% , 0.9, 0.9, 0)

In order to associate the movement with a geometrical entity we have to modify the alias-section, i.e. assign the boundary
elements concerned with the appropriate MOVE -flag:

"cylinder" = " BC$wallCyl$ ACTIVESinit_always$ IDENT%BND_slip% MAT$MatUSER$
TOUCH%TOUCH_geometrical% MOVESMOVE_circle$ LAYERO CHAMBER1 SYMMETRYFACE2 "

54

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_04b

The higher particle density around the cylinder now will have to move in time, as the cylinder also moves. Thus, we attach
the MOVE -flag also to the point around which the smoothing length is defined:

"hPoint" = "SMOOTH_LENGTHP_0 ACTIVESinit_always$ MOVE$SMOVE_circle$ CHAMBER1 "

In this example the cylinder is not subdivided into different parts of the hull, only the side faces are separated.

Note: In order to reproduce Figure 15, load the state file tut05_figure15.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 06

2.4.8. tut3d_06

TUTORIAL 6: flow around a periodically moving cylinder

Goals of this Unit:
« user-defined functions, see especially Equations

The Fluid Mechanical Problem
Once again we keep our setting and only change the movement of the cylinder.

Figure 16: Fluid Flow with periodically moving
cylinder

Instead of constant movement, we now want to move it periodically according our own equation:
MOVE ($MOVE_circle$) = (%MOVE_position% , 0, [0.3*sin(15.0*Y %ind_time% +0.0)], 0)

Here, as you see, we use the index %ind_time% which stores the current simultion time.
All the other settings are similar to tut3d_05 and tut3d_04a .

temperature as material coloring

Again, we use the temperature as colorizing functionality of the material, in order to visualize the mixing effect of the
periodically moved cylinder. For that purpose, we give an extremely small heat conductivity as well as isolating boundary
conditions for the temperature.

55

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_05

Figure 16b: temperature colorizing the
material and thus visualizing the mixing effect
of the moving cylinder

Note: In order to reproduce Figures 16 and 16b, load the state files tut06_figure16.pvsm and tut06_figure16b.pvsm in
ParaView and choose 'Search files under specified directory'. Then, select the correct data directory (MESHFREE results
folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 07

2.4.9. tut3d_07

TUTORIAL 7: boiling flow in a bow!

Goals of this Unit:
o Further Example for User-defined Functions and Constants
« density (other material items) based on simulation result (such as temperature)

The Fluid Mechanical Problem
A bowl filled with a liquid slowly heats at the bottom and cools at the free surface by radiation and convection. The density
of the liquid depends on the temperature. By gravity, the fluid starts to circulate.

56

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_06

Figure 17: Flow profile and temperature
distribution in the bowl at a selected
simulation state

Density depending on temperature

The density of the material “XYZ” is not a constant value anymore as in previous tutorials. It is dependent on the
temperature and defined by a curve as follows:

density(XYZ) = curve{ $densityXYZ$ }depvar{ %ind_T% } # curve $density XYZ$ is dependent (leftmost column in
the curve definition) on the FPM-simulation item %ind_T% (i.e. temperature)

begin_curve{ "density_XYZ"}, nb_functions {1} # curve defining the density based on the temperature
950.0 1000.0

1200.0 970.0

1400.0 870.0

1800.0 760.0

2000.0 730.0

end_curve

By “curve{$density_XYZ$} depvar{ %ind_T% }" we tell MESHFREE that the density depends on the variable %ind_T%
(the temperature) by the curve:

Figure 18: Density depending on the
Temperature

a00

3,

Dianaity in vl

G00

750k

?DD 1 1 1 1
goa 1000 1200 1400 1600 1800 2000

Temperature in K

The first column in the curve represents the temperature, the second column represents the corresponding density. For
temperatures not listed the density is obtained by linear interpolation.

Temperatur boundary conditions dependent on geometrical position
At the free surface, we assume radiation and heat energy convection:

57

BC_T ($free0$) = (%BND_ROBIN%, equn{ $Radi_Con$ }, &T_ref&)

The first parameter for this Cauchy boundary condition is a formula which we put separately into an equation named
“Radi_Con”
begin_equation{ "Radi_Con"}
&sigma& * &epsilon& *(Y %ind_T% "3+Y %Iind_T% "2* &T_ref& +Y %ind_T% * &T_ref& "2+ &T_ref& *3)+ &convect&
end_equation

Inside an equation we have access to all the usual variables. Further, it is advisable to define necessary parameters also
in a dedicated alias block:

begin_alias{ }
"Spec1" = "%indU_matColor1%" # set up a user-defined index (alsways to be of the form indU_xyz
"sigma" = "5.67E-8"

"epsilon" ="0.3"
"T_ref" ="1000.0"
"convect" = "30"
end_alias

The temperature boundary condition for the bottom of the bowl is, again, given by a curve

BC_T ($wall$) = (%BND_ROBIN%, 50000, curve{ bc_temp }depvar{equn{ $x-z-radius$ }}) # make the curve given
in bc_temp dependent from the radius with respect to the x-z-plane

begin_curve{ "bc_temp"}, nb_functions {1} # curve defining the enivronment temperature for the temperature-BC base
don the x-z-radius of the bowl

0.00 1900.0

0.30 1900.0

0.30 1400.0

0.50 1000.0

10.0 1000.0

end_curve

At the center of the bottom we want to have 1900K. Far a way from the center, we have colder temperatures.

Note: In order to reproduce Figure 17, load the state file tut07_figure17.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 08

2.4.10. tut3d_08

TUTORIAL 8: simple pressing process

Goals of this Unit:
« Transport Equations for additional Species
« user defined indices
« user defined coloring indices

The Fluid Mechanical Problem
In this tutorial we dip a plunger into a tank filled with a viscous fluid. As shown in the series of images below, the plunger
will force the fluid upwards in between the plunger and the side walls.

58

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_07

Figure 20a: Fluid at selected simulation
states

Initialize and save the color items

In order to see how the fluid interfuses, we define several color species which are assigned to points depending on their
initial position. These species are then transported with the point cloud and visualize how the fluid is mixed during the
motion enforced by the plunger.

We consider two rather similar ways of saving such a coloring. On the one hand we store the species in the
UserDefinedIndices %indU_spec1% and %indU_spec2% which are written out due to the lines

SAVE_ITEM = (%SAVE_scalar%,[Y%indU_spec1%)], "spec1”)
SAVE_ITEM = (%SAVE_scalar%,[Y%indU_spec2%)], "spec2")

in the UCV. This provides us with an access to the values from ParaView. On the other hand we write out discrete
UserDefinedIndices for coloring %indC_spec1% and %indC_spec2% via

SAVE_ITEM = (%SAVE_scalar%,[Y%indC_spec1%], "spec1_C")
SAVE_ITEM = (%SAVE_scalar%,[Y%indC_spec2%], "spec2_C")

The difference between these two options will be discussed shortly. In both cases, the initialization of our colorized species
is given in the INITDATA -block:

INITDATA ($GLASSS$,%indU_spec1%
INITDATA ($GLASS$,%indU_spec2%
INITDATA ($GLASS$,%indC_spec1%
INITDATA ($GLASSS$,%indC_spec2%

= [equn{ $equn_xBinldx$

= [equn{ $equn_yBinldx$

= [equn{ $equn_xBinldx$
{

]
]
]
= [equn{ $equn_yBinldx$ }]

o o o o
——

where the equations

begin_equation{ $equn_xBinldx$ }
int(Y %ind_x(1)% /1.0*(&nBinX& -1))
end_equation

begin_equation{ $equn_yBinldx$ }
int(Y %ind_x(2)% /0.5*(&nBinY& -1))
end_equation

simply represent a partitioning of the initial pointcloud along the x- and y-direction into the number of bins specified via

begin_alias{ }

"nBinX" = "5" #Number of discrete values along x-direction (similar to histogram bins)
"nBinY" = "5" #Number of discrete values along y-direction (similar to histogram bins)
end_alias

User defined material index

In FPM, the user is able to define additional indices in order to solve additional simulations tasks, see UserDefinedIndices .
They work in the same way as the classical indices, so the user can initialize them, and on top, solve PDE of convection-
diffusion-type.

59

In this tutorial, we used these UserDefinedIndices in order to set up the coloring we discussed above. Taking the vertical
coloring stored in %indU_spec2% as an example, the above settings lead to the following simulation snapshots

Figure 20b: Fluid colouring via indU_ at
selected simulation states

User defined coloring index

While the UserDefinedIndices provide a visually informative representation of mixing, we also observe that the range of
values shifts over time. This is due to the fact that these indices are subject to all interpolations that would be applied to
other physical variables.

This behavior can be circumvented by the subclass of UserDefinedColorIndices, which always inherit values from parent
points instead of employing interpolation procedures. In this way, the original number of discrete values is maintained
throughout the simulation.

Consequently, considering the identical snapshots for %indC_spec2% shows an unchanged range of values:

Figure 20c: Fluid colouring via indC_ at
selected simulation states

The smearing of initial values when using UserDefinedIndices can also be seen when considering histograms of
%indU_spec2% and %indC_spec2% values at the time of the final snapshot:

60

6000 8000

7000

I
=
S
S

6000

4000
5000

w
S
S
S

4000

3000

[N
=
S
S

2000
1000

Number of points in histogram bin

1000

0 1 2 3 4 5 0 & 2
indU_spec2 indC_spec2

3

Figure 21: Histograms of species 2 values at
time of final snapshot

Note: In order to reproduce Figures 20a, 20b, and 20c, load the state files tut08_figure20a.pvsm, tut08_figure20b.pvsm,
and tut08_figure20c.pvsm in ParaView and choose 'Search files under specified directory'. Then, select the correct data

directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial tut3d_09

2.4.11. tut3d_09

TUTORIAL 9: simple floating process

Goals of this Unit:
« Several Free Surfaces
« Symmetrical Model

The Fluid Mechanical Problem

Molten material flows down a ramp onto a bath of liquid support material whose density is bigger than the one of the melt.
Thgus, the melt swims on the support bath. The idea of this tutorial stems from the float glass production process, where
the melt material is liquid glass, and the support bath is liquid tin. This process is indeed meaningful for many more

production processes in industry.

Figure 21: Start Configuration: Glass flows
from the upper left to the lower right side

61

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_08

Subdividing the free surface into top and bottom parts

The tin bath on which the glass floats (but which we do not want to compute explicitly) is contained in the empty box at the
bottom shown in Figure 21. We only include the buoyant forces acting upon the lower surface so that the glass can dip
under the tin level (which we assume to be constant). To this end we assume a free boundary condition for velocity, and a
Dirichlet condition for the pressure:

BC_T ($free_bottom$) = (%BND_ROBIN%, 2000.0, 1400.0)

BC_p ($free_bottom$) = (%BND_free_implicit%, equn{ $hpressureTin$ }) # the outer pressure is governed by the
diving depth into the support bath

BC_v ($free_bottom$) = (%BND_free% , 0,0,0, 0.3)

begin_equation{ "hpressureTin"}
&gravity& * &Tdensity& *(&Theight& -Y %ind_x(2)%)
end_equation

In order to distinguish the lower free surface from the upper one we have given the boundary condition identifiers explicit
names (rather than the default “0”). The conditions for the upper free surface are as usual:

BC_T ($free_top$) = (%BND_ROBIN%, 100.0, 1400.0)
BC_p ($free_top$) = (%BND_free_implicit%, 0)
BC_v ($free_top$) = (%BND_free% , 0,0,0, 0.3)

The listing of the corresponding geometric entities in the alias section now looks like:

"gtop" = " REV_ORIENT BC$free_top$ ACTIVES$free_surface$ MATSGLASS$ LAYERO CHAMBER1 "
"gdown" = " BC$free_top$ ACTIVES$free_surface$ MATSGLASS$ LAYERO CHAMBER1 "
"gbottom" =" REV_ORIENT BC$free_bottom$ ACTIVES$free_surface$ MAT$GLASS$ LAYERO CHAMBERT "

where “gtop” and “gdown” are the two rectangular upper faces, "gbottom" is the free surface at the interface to the support
bath.

Define symmetry plane

By using a symmetry plane, one can reduce the simulation time, as one considers only a half or a part of the geometrical
model. However, it is necessary to provide proper boundary conditions at the symmetry boundary. In our case, the box
shown in Figure 21 is, in reality, twice as wide as shown, the back side (the right side when seen from the outflow wall) is
the symmetry plane. The boundary conditions are:

BC_T (sym) = (%BND_ROBIN%, 0, 1400)
BC p (sym) = (%BND_NEUMANN% , 0.0)
BC_v (sym) = (%BND_NEUMANN% , 0, 0, 0)

Here %BND_NEUMANN% defines a pure symmetry condition, as it imposes du/dn=0, that is the normal derivative of the
function vanishes. The geometry items belonging to the symmetry-plane are listed here:

"gside3" = " BCsym ACTIVESinit_always$ IDENT%BND_slip% MAT$GLASS$ TOUCH%TOUCH_geometrical%
MOVENO_MOVE LAYERO CHAMBERT1 "

"owall3" = " BCsym ACTIVES$noinit_always$ IDENT%BND_slip% MAT$GLASS$ TOUCH%TOUCH_geometrical%
MOVENO_MOVE LAYERO CHAMBERT1 "

"gside6" = " REV_ORIENT BCsym ACTIVESinit_always$ IDENT%BND_slip% MAT$GLASS$
TOUCH%TOUCH_geometrical%e MOVENO_MOVES LAYERO CHAMBERT "

"wall3" = " REV_ORIENT BCsym ACTIVES$noinit_always$ IDENT%BND_slip% MAT$GLASS$
TOUCH%TOUCH_geometrical%e MOVENO_MOVES LAYERO CHAMBERT "

In the beginning, the interface to the support bath swings up and down until finding the equilibrium. After 50s of simulation
time, the stationary solution is reached:

62

Figure 22: Stationary Solution with a Glance
at the Symmetry Plane of the Model

Note: In order to reproduce Figures 21 and 22, load the state files tut09_figure21.pvsm and tut09_figure22.pvsm in
ParaView and choose 'Search files under specified directory'. Then, select the correct data directory (MESHFREE results
folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - GettingStarted - Tutorial - tut3d 10

2.4.12. tut3d_10

TUTORIAL 10: simple rolling process

Goals of this Unit:
« several materials and chambers in 3D
« smoothing length definition for chambers, respectively
« tear-off criterion

The Fluid Mechanical Problem
A fluid coming out of a feeder is rolled into a film by two rolls. The rolls are filled with high-viscosity fluids, such that they
practically perform a rigid rotation. The rolls are cooled at the inside.

63

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_09

Time: 0.001000 ime: 1. Figure 25: (a) Initial Stage of the Point Cloud;
(b) Stage when Jet has been cut

Setting up the problem

Altogether we have three different materials. In order to handle the model with FPM we introduce three chambers, one for
each material:

KOP(1) = LIQUID V:IMPLICIT T:EXPIMP(1.0) LAGRANGE vp-
KOP(2) = LIQUID V:IMPLICIT T:EXPIMP(1.0) LAGRANGE vp-
KOP(3) = LIQUID V:IMPLICIT T:EXPIMP(1.0) LAGRANGE vp-

For each chamber we need to define a smoothing length, so we define three additional points in the Boundary Elements
section:

BND_point &Point_H_Curve1& 0.0 0.0 0.0
BND_point &Point_P_100& 0.0 0.0 0.0
BND_point &Point_P_200& 0.0 0.0 0.0

The rolls do not require a dense particle cloud. In contrast we should use a small smoothing length close to where the two
rolls almost touch:

USER_h_funct = 'DSCR’

SMOOTH_LENGTH (H_CURVE1) = (%H_constant% , 0.4)
SMOOTH_LENGTH (P_100) = (%H_constant% , 0.3)
SMOOTH_LENGTH (P_200) = (%H_constant% , 0.3)

In the alias section we now have to specify the chamber to which the geometric entities belong.

For chamber 1 (the liquid melt), we define

"in" =" REV_ORIENT BC$BC _inflow$ ACTIVES$noinit_always$ IDENT%BND _inflow% MAT$GLASS$
TOUCH%TOUCH_always% MOVENO_MOVE CHAMBER1 "

"out_left" = " BC$BC_outflow$ ACTIVES$noinit_always$ IDENT%BND_outflow% MATSGLASSS
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

"out_right" =" REV_ORIENT BC$BC_outflow$ ACTIVE$noinit_always$ IDENT%BND_outflow% MAT$GLASS$
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

"out_back" = " BC$BC_outflow$ ACTIVE$noinit_always$ IDENT%BND_outflow% MAT$GLASS$
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

"out_front" =" REV_ORIENT BC$BC_outflow$ ACTIVE$noinit_always$ IDENT%BND_outflow% MAT$GLASS$
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

"out_bottom" = " BC$BC_outflow$ ACTIVES$noinit_always$ IDENT%BND_outflow% MAT$GLASSS
TOUCH%TOUCH._liquid% MOVENO_MOVE CHAMBER1 "

"roll_left_out" =" REV_ORIENT BCBC_left_out2 ACTIVE$noinit_always$ IDENT%BND_wall_nos|% MAT$GLASS$
TOUCH%TOUCH._liquid% MOVE$MOVE_RLEFT$ CHAMBER1 "

"roll_right_out" =" REV_ORIENT BCBC_right_out2 ACTIVES$noinit_always$ IDENT%BND_wall_nos|%
MAT$GLASS$ TOUCH%TOUCH_liquid% MOVE$MOVE_RRIGHT$ CHAMBER1 "

64

For the two other chambers (rolls), we define

"roll_left_front" =" BCBC_roll_side ACTIVES$init_always$ IDENT%BND_slip% MAT$SMAT_RLEFT$
TOUCH%TOUCH_always% MOVE$MOVE_RLEFT$ CHAMBER2 "

"roll_left_back" =" BCBC_roll_side ACTIVESinit_always$ IDENT%BND_slip% MAT$SMAT_RLEFT$
TOUCH%TOUCH_always% MOVE$MOVE_RLEFT$ CHAMBER2 "

"roll_left_in" =" BCBC_roll_in ACTIVES$init_always$ IDENT%BND_wall_nosl% MAT$SMAT_RLEFT$
TOUCH%TOUCH_always% MOVE$MOVE_RLEFT$ CHAMBER2 "

"roll_left_out" =" BCBC_left_out1 ACTIVESinit_always$ IDENT%BND_wall_nosl% MATMAT_RLEFT
TOUCH%TOUCH_always% MOVE$MOVE_RLEFT$ CHAMBER2 "

"roll_right_front" = " BCBC_roll_side ACTIVESinit_always$ IDENT%BND_slip% MATSMAT_RRIGHT$
TOUCH%TOUCH_always% MOVE$MOVE_RRIGHT$ CHAMBERS3 "

"roll_right_back" =" BCBC_roll_side ACTIVESinit_always$ IDENT%BND_slip% MATSMAT_RRIGHT$
TOUCH%TOUCH_always% MOVE$MOVE_RRIGHT$ CHAMBERS3 "

"roll_right_in" =" BCBC_roll_in ACTIVESinit_always$ IDENT%BND_wall_nosl% MATMAT_RRIGHT
TOUCH%TOUCH_always% MOVE$MOVE_RRIGHT$ CHAMBERS3 "

"roll_right_out" = " BCBC_right_out1 ACTIVESinit_always$ IDENT%BND_wall_nosl% MAT$SMAT_RRIGHT$
TOUCH%TOUCH_always% MOVE$MOVE_RRIGHT$ CHAMBERS3 "

#ALIAS_points

"Point_H_Curvel" =" ACTIVES$init_always$ SMOOTH_LENGTHH_CURVE1 MOVENO_MOVE CHAMBERT "
"Point_P_100" = " ACTIVES$init_always$ SMOOTH_LENGTHP_100 MOVENO_MOVE CHAMBER2 "
"Point_P_200" = " ACTIVES$init_always$ SMOOTH_LENGTHP_200 MOVENO_MOVE CHAMBERS3 "

Please observe, that "roll_left_out" and "roll_right_out" (the outer skins of the rolls) are defined twice, as they are part of
the rolls as well as of the liquid melt.

Especially have a look at the temperature boundary conditions for the contact between the melt and the rolls, where we
prescribe a big heat transfer coefficient:

BCON_CNTCT (BC_left_out1 ,%ind_T%) = (%BND_ROBIN%, 200000, 0, 0) # almost perfect heat contact
BCON_CNTCT (BC_left_out2 ,%ind_T%) = (%BND_ROBIN%, 200000, 0, 0) # almost perfect heat contact
BCON_CNTCT (BC_right_out1 ,%ind_T%) = (%BND_ROBIN%, 200000, 0, 0) # almost perfect heat contact
BCON_CNTCT (BC_right_out2 ,%ind_T%) = (%BND_ROBIN%, 200000, 0, 0) # almost perfect heat contact

In order to release the liquid melt from the rolls, we have to provide tear-off criteria

BC_TearOffCriterion (BC_left_out2) = equn{ $TearOff$ }
BC_TearOffCriterion (BC_right_out2) = equn{ $TearOff$ }

Note: In order to reproduce Figure 25, load the state file tut10_figure25.pvsm in ParaView and choose 'Search files under
specified directory'. Then, select the correct data directory (MESHFREE results folder).

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles

3. InputFiles

Input files used for steering MESHFREE

MESHFREE is mainly steered by two Input files: USER_common_variables.dat and common_variables.dat. In order to
start a simulation, these two files need to be present in your project folder.

65

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.GettingStarted.Tutorial.tut3d_10

List of members:
common_variables input file for development and debugging purposes

USER_common_variables defines the simulation model: geometry, boundary conditions, material parameters, etc.

MESHFREE - InputFiles - USER_common_variables

3.1. USER_common_variables

defines the simulation model: geometry, boundary conditions, material parameters, etc.

The file USER_common_variables.dat contains the definition of the simulation model, i.e. all physical and geometrical
behavior of the fluid phases, boundary conditions, and parts. The file is structured in sections and there is no certain
ordering of these sections required.

Necessary sections in USER_common_variables.dat

A simulation model consists at least of the following sections:

« Solver section: KindOfProblem , selection of the solver to be used for each simulation chamber (chamber = phase).

- Physical Properties Section: PhysicalProperties , to define material properties.

- Boundary Elements section: BoundaryElements , to include geometry data into the simulation model.

« Active Section: ACTIVE , to define the active/visibility flags for the boundaries. (Active always or only in the
beginning? Shall point cloud filling happen from this boundary element?)

« Move Section: MOVE , to define movement of the boundary elements.

- Boundary conditions Section: BoundaryConditions , to define boundary conditions for quantities of computation,
usually velocity, pressure and temperature.

« Initial conditions Section: INITDATA , to define initial conditions.

- Time Step Control Section: TimeControl , to define simulation time parameters (start/end time, time step sizes).

- Smoothing Length Section: SmoothingLength , for specifying the level of discretization for the simulation.

« Alias Section: the AliasForGeometryltems section combines the definitions of the previous sections and attaches
them to the boundary elements.

« Saving Section: the SAVE section specifies the format for the simulation results and which quantities shall be
stored.

Syntax of USER_common_variables.dat

The file USER_common_variables.dat (UCV) has its own scripting syntax to define the simulation model. An overview over

this syntax can be found in __GeneralRemarks__ .

A general overview over all supported keywords is found in __overview_of_syntax_elements__ .

A quick reference to all predefined variables and constants can be found in Indices and __Constants__, respectively.

A reference to all parameters that can be defined in both common_varables (CV) as well as UCV can be found in
Parameters__ .

Equations and Curves

A powerful feature of MESHFREE is that the user is very flexible in including measurement data and dependencies
between quantities into the simulation model:

« Curves - tabular value depending on one or two variables, ideal for measurement data.

« Equations - ideal for physical relations.

These can for example be flexibly included in evaluating a RightHandSideExpression .
Postprocessing

MESHFREE offers some features for immediate postprocessing of computation results:
« INTEGRATION offers features to calculate integrals over the simulation domain and the boundaries at the end of
the timestep.
« UserDefinedIndices allow the user to define additional MESHFREE internal variables.

66

List of members:

_ DEFAULT_configuration_file_

__GeneralRemarks

__overview_of_syntax_elements___

__Parameters__
Abaquslnterpolation
ACTIVE

ALIAS
BoundaryConditions
BoundaryElements
BUBBLES

CODI
ConsistencyChecksAtStartup
COUPLING

Curves
DropletSource
Equations

EVENT
include_Ucv{
INITDATA
INTEGRATION
KindOfProblem
Loops

MEMORIZE
MONITORPOINTS
MOVE
NumericalControl
ODE
PhysicalProperties
PointCloudQualityCheck

PointCloudReduction

allows to provide Ucv_DEFAULT.dat as a generalistic/default definition
general remarks upon the syntax within UCV files

shows all possible syntax in USER_common_variables
CV-parameters that can also be set in UCV

abaqus mesh interpolation

sets active flags for boundary aliases

alias definitions within a begin_alias-end_alias-block

definition of physical boundary conditions for boundary elements
definition of the boundary elements to be used during simulation
BUBBLES

solve additional COnvection-Dlffusion-problems (CODI)

check the physical/mathematical consistency for user-given input data
couple the running MESHFREE simulation to another, currently running simulation
define curves in the input file

generate a sequence of spherical droplets

define functions, equations, and algebraic expressions

events defined for the point cloud

include a file in UCV-format

prescribe initial data conditions

integration of the simulation results

Solver Selection for a simulation chamber

loop over a block of lines in the input file

memorize functionality

monitor points due to user-defined conditions

move parts of the boundary by an explicit statement

numerical control options

solver for ordinary differential equations (ODE)

define physical properties of a material

check the quality of a read in point cloud

select/mark MESHFREE points by reducing the point cloud

67

ReadInPointCloud read in an already existing point cloud from file

RepeatCurrentTimeStep repeat the current time step with different parameters or reduced pointcloud
RESTART control the restart functionality

SAVE save computational results in different formats

Selection Switch/Case-type selection statement

SmoothingLength define the smoothing length by a set of commands

TimeControl time control options

MESHFREE - InputFiles - USER_common_variables - ACTIVE

3.1.1. ACTIVE

sets active flags for boundary aliases

The ACTIVE statement specifies when boundary elements are considered. It needs to be

specified for the initial filling phase (%ACTIVE _init% , %ACTIVE noinit% , %ACTIVE_nofill%) and
the actual simulation (%ACTIVE_always%). The specifier for the filling phase is mandatory,
whereas there is only %ACTIVE_always% for the simulation phase. Leaving off %ACTIVE_always%
will deactivate the boundary during simulation.

The ACTIVE statements are then later referenced in the AliasForGeometryltems .

Common combinations:

ACTIVE ($init_always$) = (%ACTIVE_init% , %ACTIVE_always%) # normal wall, inflow, or outflow

ACTIVE ($noinit_always$) = (%ACTIVE_noinit% , %ACTIVE_always%) # wall if simulation starts at a nozzle
ACTIVE ($nofill_always$) = (%ACTIVE_nofill% , %ACTIVE_always%) # complex geometry which would try too many
seeding points in filling

ACTIVE ($init_never$) = (%ACTIVE_init%) # free surface: fills initially, but is not kept for simulation

The behavior of %ACTIVE_init% can be different when using ORGANIZE_ReducedFillingOfWalls .

Intervals of activity:

If the boundary has to be switched on/off after certain times, or if there are activity intervals, the keyword
%ACTIVE_always%

has to be replaced by PAIRS of numbers.

ACTIVE ($init_temporal$) = (%ACTIVE_init% , t_on_1, t_off 1) # boundary is active for all times t fulfilling (t_on_1 <=
t<=1t_off 1)

ACTIVE ($noinit_temporal2$) = (%ACTIVE_noinit% ,t_on_1,t off _1,t on_2,t off 2) # boundary is active for all
times t fulfilling (t_on_1 <=t<=t off 1) OR (t_on_2 <=t <=1t off 2)

ACTIVE ($noinit_temporalN$) = (%ACTIVE_noinit% ,t on_1,t off 1,...,t on_N,t off N)# N time intervals.

« The intervals have to be given in increasing order.
« There is no limit to the number of time intervals.

Good to know:
« See also BC_PASSON , IDENT_PASSON , MOVE_PASSON .
« In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the corresponding chamber.

68

List of members:

%ACTIVE_init% active during initial filling
%ACTIVE_nofill% only visible during initial filling
%ACTIVE_noinit% not active during initial filling
%ACTIVE_always% active during simulation
MESHFREE - InputFiles - USER _common_variables - ACTIVE - %ACTIVE always%

%ACTIVE_always%

active during simulation

%ACTIVE_ always% determines if the boundary is active during the actual simulation.
It does not imply that the boundary will be active in the initial filling phase. In

order to leave out a boundary in the simulation just leave off the %ACTIVE_always%
keyword.

MESHFREE - InputFiles - USER_common_variables - ACTIVE - %ACTIVE init%

%ACTIVE_init%

active during initial filling

Activates the boundary during initial filling. MESHFREE starts by filling points
on these boundaries first and then filling into the interior.

The actual filling behavior depends on IDENT and ORGANIZE_ReducedFillingOfWalls as well.
For boundary elements to be visible in the filling phase but not to fill points

themselves choose %ACTIVE_nofill% instead. This can be helpful if there is complex
geometry, e.g. a fully detailed car. However, one filling boundary part is mandatory.

MESHFREE - InputFiles - USER_common_variables - ACTIVE - %ACTIVE nofill%

%ACTIVE_nofill%

only visible during initial filling

Boundary parts marked with %ACTIVE_nofill% are visible during the initial filling
phase. However, they do not fill points to the inside, but only restrict the filling
domain.

MESHFREE - InputFiles - USER_common_variables - ACTIVE - %ACTIVE noinit%

%ACTIVE_noinit%
not active during initial filling

Boundary parts marked with %ACTIVE_noinit% are not visible in the initial filling phase.

MESHFREE - InputFiles - USER_common_variables - ALIAS

3.1.2. ALIAS

69

alias definitions within a begin_alias-end_alias-block

Note: All names of geometry parts need to be assigned to special aliases (see AliasForGeometryltems).

An alias block contains replacement definitions, i.e. what a certain string occurring in USER_common_variables will
be replaced with.

begin_alias{ }
"alias1" = " String to replace &alias1& "

"aliasN" = " String to replace &aliasN& "
end_alias

I f MESHFREE encounters one of the text strings given in the alias block on the left hand side during read-in of
USER_common_variables ,
then they will by replaced by the string given on the right hand side.

In order to exclude misinterpretations, text strings to be replaced have to be put in between &...& icons.

Note:
« Definition and referencing of vectorial aliases is also possible. The entries have to be of the same
type, i.e. string or number.
« Referencing aliases on the left hand side of another alias definition is also possible.
« See also ConstructClause .
« See also Variables .

Example 1:

begin_alias{ }

"EqunForBC" = "[Y%ind_x(1)%/Y%ind_h% * &Param&]"
"Param" = "23.452444 * &Scaling& "

"Scaling" = "0.001 "

end_alias

During read-in of USER_common_variables the line

BC_T ($TemCond$) = &EqunForBC&

will be replaced by: BC_T ($TemCond$) = [Y %ind_x(1)% /Y %ind_h% * 23.452444 * 0.001]

Example 2:

begin_alias{ }
"Class" = "inflow, wall, outflow" # definition of geometry class

"&Class(1)&" =" BCBC_in ..." # definition of inflow alias
"&Class(2)&" = " BCBC_wall ..." # definition of wall alias
3

"&Class(3)&" = " BCBC_out ..." # definition of outflow alias
end_alias

During read-in of USER_common_variables &Class(i)& will be replaced by the respective entry of Class.

List of members:

AliasForGeometryltems alias definitions for geometry parts

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems

70

AliasForGeometryltems
alias definitions for geometry parts
All names of geometry parts need to be assigned to special aliases.
There are multiple options to deal with the name of a geometry part:
1.) Explicit assignment of properties to full names of geometry parts
o Declare full properties as explained below.

Example:

begin_alias{ }

"car" =" BCBC_box ACTIVES$noinit_always$ IDENT%BND_slip% MAT$Mat1$
TOUCH%TOUCH_liquid% MOVE$MOVE_car$ LAYERO CHAMBER1 " # full description
end_alias

o Assign properties of another alias.

Example:

begin_alias{ }
"windshield" = "&car&" # reference to alias car
end_alias

2.) Automatical choice of properties based on patterns

o Similar to 1, but matching multiple names with a wildcard. The wildcard-option is tried ONLY, if no direct
match with the given aliasses
can be stablished. In this case, each of the matched names is available in postprocessing.

Example:
Names in geometry file: WheelFrontLeft, WheelFrontRight, WheelBackLeft, WheelBackRight

begin_alias{ }
"Wheel*" = "&car&" # reference to alias car
" =" BCBC_box ACTIVES$noinit_always$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid%

MOVENO_MOVE LAYERO CHAMBERT " # full description
end_alias

o

Using the DEFAULT properties for any group of names not specified via the options above. The alias-name-
definition has to

contain "_DEFAULT" at the end. See also _ DEFAULT_configuration_file .

Example:

begin_alias{ }
"in*_DEFAULT" = "&car&" # reference to previously defined alias car
end_alias

For all those matching a DEFAULT-item, MESHFREE attaches "_DEFAULT" as a suffix

to the given name from the geometry input, such that it can be recognized easily as DEFAULT-defined. The
geomtry item "inflow1", matching the

alias "in*_DEFAULT", will be named "inflow1_DEFAULT" for postprocessing.

71

o DEPRECATED: Using default properties for any names not specified via the options above. All these
names will be replaced by 'default'.

Example:

begin_alias{ }
"default" = "&car&" # reference to alias car
end_alias

Instead of "default", use "*_DEFAULT" in order to have a general default definition, that matches ALL
geoemtry.

72

List of members:

ACTIVE
BC

BC_PASSON

BOUNDARYFILLI
NG

CHAMBER

COORDTRANS

IDENT

IDENT_PASSON

IGNORE
LAYER

MAT

METAPLANE
MOVE

MOVE_PASSON

MPCCI
POSTPROCESS
REV_ORIENT

SMOOTH_LENG
TH

(required) define the activation behavior of the boundary elements of this part
(required) define flag for boundary conditions

(optional) for deactivated/disappearing boundary elements: give BC-flag to released MESHFREE
points

(optional) possibility to request reduced filling behavior for MESHFREE points for parts of the
boundary

(required) define the chamber index for the geometry entities

(experimental) define coordinate transformation to mathematically transform long thin geometries into
short thick ones

(required) how to handle the geometry part during point cloud organization

(optional) for deactivated/disappearing boundary elements: give IDENT-information to released
MESHFREE points

(optional) ignore this geometry item when reading from geometry file
(optional) define layer index

(required) define the material flag to be used, when the geometry part fills new points (mostly for initial
filling)

(optional) define a cutting plane for MESHFREE points
(required) provide a flag for the definition of boundary movement

(optional) for deactivated/disappearing boundary elements: give MOVE-flag to released MESHFREE
points

(optional) define mpcci index
(optional) define flag for postprocessing/integration
(optional) flip around orientation of boundary parts upon read-in of geometry files

(optional) define flag for smoothing length definition

SMOOTH_N (experimental) invoke smoothing of the boundary

SYMMETRYFAC (optional) definition of the geometry part as symmetryface (influences distance computation)

E

TOUCH (required) define the wetting/activation behavior of MESHFREE points along the given boundary part

TWOSIDED (experimental) copy the boundary entity re-orient it, and give other attributes to it
MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
ACTIVE

ACTIVE

(required) define the activation behavior of the boundary elements of this part

The ACTIVE flag in the alias definition of a boundary element references an ACTIVE statement. The ACTIVE statement
defines whether a boundary is active during the initial filling and/or the remaining simulation. Additionally, it specifies if the
boundary fills points to the inside in the initialization phase of the simulation.

Example:
ACTIVE ($init_always$) = (%ACTIVE_init% , %ACTIVE_always%) # Definition of the Active statement

begin_alias{ }

"car" =" BC$...$ ACTIVESinit_always$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$ CHAMBER1 " # Referencing
the Active statement

end_alias

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems - BC

BC

(required) define flag for boundary conditions

In the alias setion, the BC flag attaches boundary conditions to boundary elements. Several AliasForGeometryltems might
share the same boundary conditions.

Example:
definition of boundary conditions BC_wall for velocity, pressure and dynamic pressure
BC_p (BC_wall) = (%BND_wall%)
BC_v (BC_wall) = (%BND_wall%)
BCON (BC_wall ,%ind_p_dyn%) = (%BND_wall%)

begin_alias{ }

#referencing the definition of the boundary conditions BC_wall

"wall" = " BCBC_wall ACTIVES...$ IDENT%...% MATS...$ TOUCH%...% MOVES$...$ CHAMBER1 "
end_alias

Referencing the definition of the boundary conditions BC_wall in the alias section applies the boundary conditions to all
boundary elements with that alias.

See also: BoundaryConditions

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
BOUNDARYFILLING

BOUNDARYFILLING
(optional) possibility to request reduced filling behavior for MESHFREE points for parts of the boundary

Experimental!
Reduce filling on certain boundary elements.

List of members:

BOUNDARYFILLING_OnlyInActiveNeighborhood only if active points in the neighborhood
BOUNDARYFILLING_OnlylfActiveltself only if BE is active
BOUNDARYFILLING_Always always fill

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
BOUNDARYFILLING - BOUNDARYFILLING_Always

BOUNDARYFILLING_Always

always fill

74

Default behavior.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
CHAMBER

CHAMBER

(required) define the chamber index for the geometry entities

In MESHFREE , a simulation chamber generally means a phase that takes part in the simulation. In the alias section, the
CHAMBER index selects for which KindOfProblem the boundary has an influence and provides thus a link between the
solver choice in KOP and the boundary conditions BC in the alias definition.

Example 1: In a one-phase example KOP is defined for CHAMBER 1
KOP(1) = LIQUID LAGRANGE IMPLICIT v-- TURBULENCE :k-epsilon

begin_alias{ }
"car" = " BC$...$ ACTIVES...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$ CHAMBER1 "
end_alias

and in the alias section the flag CHAMBER1 links to KOP(1) for the boundary element "car" .

If the same boundary needs to be visible to several chambers, they need to be defined once for each chamber, possibly
with different settings.

Example 2: in this two-phase example, KOP selects solvers for both simulation chambers 1 and 2.

KOP(1) = LIQUID IMPLICIT LAGRANGE vp- T:NONE # chamber 1: air phase
KOP(2) = LIQUID IMPLICIT LAGRANGE vp- T:NONE # chamber 2: water phase

begin_alias{ }

"wall" =" BCBC_wall_air ACTIVES$init_always$ IDENT%BND_slip% MATAIR TOUCH%TOUCH_always%
MOVENO_MOVE CHAMBERT "

"wall" = " BCBC_wall_water ACTIVES$noinit_always$ IDENT%BND_wall% MAT$WATER$ TOUCH%TOUCH_liquid%
MOVENO_MOVE CHAMBER2 "

end_alias

The boundary elements with the alias "wall" are used in both chambers as there is one line for CHAMBER1 and one line
for CHAMBER2. In most cases it makes sense that both chambers share the same MOVE statement as the movement of
the boundary elements will be identical. Everything else might be set different. Of course, it depends on the use case if the
geometry should be visible for both chambers.

A further example with different geometries for both phases can be found here .

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
COORDTRANS
COORDTRANS

(experimental) define coordinate transformation to mathematically transform long thin geometries into short thick ones

EXPERIMENTAL only.

75

List of members:
COORDTRANS linear
COORDTRANS_radial
COORDTRANS_spherical
COORDTRANS _ring

COORDTRANS_cone

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
COORDTRANS - COORDTRANS_cone

COORDTRANS cone

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltem
COORDTRANS - COORDTRANS_linear

COORDTRANS linear

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
COORDTRANS - COORDTRANS radial

COORDTRANS_radial

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
COORDTRANS - COORDTRANS_ring

COORDTRANS_ring

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
COORDTRANS - COORDTRANS_spherical

COORDTRANS_spherical

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IDENT

IDENT

(required) how to handle the geometry part during point cloud organization

In the alias section, the IDENT identifier defines how boundary elements are treated during point cloud organization and in
distance computation. IDENT is used in AliasForGeometryltems statements.

Example:

76

begin_alias{ }
"car" =" BCS$...$ ACTIVES...$ IDENT%BND_wall% MAT$...$ TOUCH%...% MOVE$...$ LAYERO CHAMBER1 "
end_alias

The most important identifiers for regular geometries are defined as:

IDENT %BND_wall%

IDENT %BND_slip%

IDENT %BND_wall_NolLayerThickness%
IDENT %BND_free%

IDENT %BND_inflow%

IDENT %BND_outflow%

IDENT %BND_free% is used in initial filling to define the initial free surface. IDENT %BND_wall% will be default if nothing
is set, except for boundary elements of type BND_plane which will be %BND_free% by default.

A second set of identifiers is provided for invisible boundary elements in integration statements:

IDENT %BND_void%
IDENT %BND_BlindAndEmpty%

IDENT %BND_BlindAndEmpty% is perfect for flux integrations, e.g. %INTEGRATION_FLUX% , and monitor point creation
with %6MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary% .

A list of all possible IDENT identifiers is found below.

Note: The type of boundary associated to a MESHFREE point is found in %ind_kob% .

List of members:

%BND_void% invisible precision measurement BE
%BND_BlindAndEmpty% invisible flux measurement BE
%BND_wall% non-moving wall points
%BND_slip% movable wall points
%BND_inflow% inflow BE

%BND_outflow% outflow BE

%BND_free% free surface BE
%BND_wall_NolLayerThickness% non-moving wall points
%BND_cut% cut-off points at metaplanes

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IDENT - %BND_BIlindAndEmpty%

%BND_BlindAndEmpty%

invisible flux measurement BE

Like %BND_void% , %BND_BlindAndEmpty% does not participate in computations of the distance of points
to the boundary. It also does not have any boundary points on it.

The main use is in flux integrations using e.g. %INTEGRATION_FLUX% , %INTEGRATION_ABSFLUX% , or
%INTEGRATION_FLUX_DROPLETPHASE% .
Similarly, it is used in the cross() -function.
Furthermore, monitor points can be created at the intersection with this boundary using
the %MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary% flag.
77

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IDENT - %BND_cut%

%BND_cut%
cut-off points at metaplanes

%BND_cut% is used to cut off points crossing this boundary. Most commonly it is
used with metaplanes (see BND_plane). Other than this it does not participate in any computations.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryliems -
IDENT - %BND_free%

%BND _free%
free surface BE

%BND_free% is usually used as IDENT flag in the initial filling phase to specify

the initial free surface. Points filled on this boundary will mark all its boundary points
as free surface. The ACTIVE flag should be set to be only active during the initial
filling phase.

%BND_free% does not participate in point cloud organization if ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IDENT - %BND_inflow%

%BND inflow%
inflow BE

%BND _inflow% is an identifier for a boundary geometry with a special filling algorithm. It does not trigger filling to the entire
interior domain. Instead, it will fill several additional layers in front of the inflow (in normal direction). This will lead to
stability in case of a free (no connection to other boundary elements) inlet.

Example: The following picture shows the initial filling for a free (no connection to other boundary elements), round inlet
with IDENT %BND_inflow% .

/ ,} '.""l’ l’ ,'
""";
(4i]14
] !y
1l
T
,::e+0] /’ /// / —::e+0]
: 10 e !’l:,'/.l'/ 10 =
‘VL : £ L iy : L
1.0e+00 1.0e+00

Parameter COMP_FillEdges = 1 improves the quality of the pointcloud by placing points on the edge of the inflow shape
(visible with %ind_kob% = 18) and parameter Nb_InflowLayers = 5 sets the number of initially filled layers.

%BND_inflow% is also filled when ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IDENT - %BND_outflow%

78

%BND_outflow%
outflow BE

%BND_outflow% is a special kind of boundary geometry. It is specifically useful for outflow
but also some inflow boundaries. If the inflow is adjacent to an entirely filled interior
domain it can have the %BND_outflow% flag. Compare for differences to %BND_inflow% .
Because of typical outflow boundary conditions boundary points on %BND_outflow% are
not fixed on the boundary, but are able to move with the flow velocity.

%BND_outflow% does not participate in point cloud organization if ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

IDENT - %BND_slip%

%BND _slip%

movable wall points

%BND_slip% in an IDENT statement is used for walls with slip velocity boundary

conditions. It will fill points according to the ACTIVE statement of the same AliasForGeometryltems .
Compared to %BND_wall% points are marked to be movable and hence will be moved with the according
velocity.

%BND_slip% is filled when ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

IDENT - %BND_void%

%BND_void%

invisible precision measurement BE

%BND_void% is usually not visible when computing the distance of a numerical point to the
boundary. In contrast to %BND_BlindAndEmpty% , %BND_void% will however participate in filling.
This is useful for measurements of properties on this boundary element. Because of this points will be
densly filled on boundary elements marked with %BND_void% .

%BND_void% will still be filled if ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

IDENT - %BND_wall%

%BND_wall%

non-moving wall points

%BND_wall% in an IDENT statement is treated as regular wall. This means that
it will fill points based on ACTIVE . In contrast to %BND_slip% boundary points
are marked as non-moving.

%BND_wall% is filled when ORGANIZE_ReducedFillingOfWalls is turned on.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltem
IDENT - %BND_wall_NolayerThickness%

%BND_wall_NoLayerThickness%

non-moving wall points

79

Behaves mostly identical to %BND_wall% . However, dist_LayerThickness does not have an effect
on free surface points close to boundaries marked with %BND_wall_NolLayerThickness% .

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
IGNORE

IGNORE

(optional) ignore this geometry item when reading from geometry file

In the alias definition, if a boundary element is tagged with the IGNORE flag this boundary item will be ignored when
reading from the geometry file. This is useful when there are parts in the geometry, that shall not take part in the
simulation. Instead of removing them from the geometry file, they can be ignored by name - also by using wildcards.

Example 1:

begin_alias{ }
"wheel" =" IGNORE " # ignore all boundary elements "wheel"
end_alias {}

Example 2: Using wildcards:

begin_alias{ }
"wheel™ =" IGNORE " # ignore all parts which names start with 'wheel'
end_alias {}

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
LAYER

LAYER

(optional) define layer index

The LAYER functionality offers a method to filter neighbors in the stencils that would otherwise be considered through thin
geometries. This prevents influencing through thin layers of geometries, e.g.in stirring applications.

A newer algorithm for performing the stencil filtering is steered by NEIGHBOR_FilterMethod . Please consider
using these methods before utilizing the LAYER functionality.
Layer based neighbor filtering

Different LAYER numbers tell MESHFREE to treat points with different numbers to not be visible to each other. Neighbor
points with a different LAYER number are not taken into account for the points stencil. This helps with certain kinds of
problems related to small and/or thin boundary.

By default all LAYERS have the index 0 - thus all neighbors would be visible to each other.

Example 1: In this example points facing one part of the geometry should not be considered neighbors of the other part of
the geometry despite being in the h-environment.

begin_alias{ }

"OnePartOfThinGeometry" = " BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ LAYER1
CHAMBER1 "

"OppositePartOfThinGeometry" = " BC$...$ ACTIVES$...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ LAYER2
CHAMBER1 "

end_alias

Advanced Layer based neighbor filtering

The default value of compute LAYER is 0. !$FPMDOCU To enable the advanced mode of the layer based filtering
compute_LAYER can be set to a positive integer. Points can only be neighbors if the LAYER numbers of two points differ
by less or equal than compute LAYER .

80

Example 2: In the common_variables file set

compute_LAYER =2

In the USER_common_variables the LAYER keyword is attached to the aliasses of different geometry parts.

begin_alias{ }

"OnePartOfThinGeometry" = " BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ LAYER1
CHAMBER1 "

"OppositePartOfThinGeometry" = " BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ LAYER4
CHAMBER1 "

"AnotherPartOfThinGeometry" = " BC$...$ ACTIVES$...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$ LAYER3
CHAMBER1 "

end_alias

Points with LAYER1 and LAYER4 can't be neighbors of each other, but they can both be neighbor to a point with LAYERS.

MESHFREE - InputFiles - USER_common_variables - ALIAS . AliasForGeometryltems - MAT

MAT

(required) define the material flag to be used, when the geometry part fills new points (mostly for initial filling)

The MAT tag in the alias definition associates the boundary elements with the PhysicalProperties of a given material.

These PhysicalProperties will be inherited to the points filled by this boundary.

Example:

Definition of Physical properties for material SMAT1$
density($MAT1$) = 2500.0 # density in kg/(m?)

cv($MAT1$) = 1500.0 # heat capacity in Nm/()Kg*K))
lambda($MAT1$) = 2.0 # heat conductivity in W/(mK))
eta(SMAT1$) = 1.0e6 # viscosity in Pa*s

mue($MAT1$) = 0.0 # shear modulus Pa

sigma($MAT1$) = 0.3 # surface tension in N/m
heatsource($MAT1$) = 0 # heat source W/(m3)
gravity($MAT1$) = (0.0, 0.0, 0.0) # gravity in m/s2

begin_alias{ }

"car" =" BC$...$ ACTIVES$...$ IDENT%...% MAT$MAT1$ TOUCH%...% MOVE$...$ CHAMBERT1 " #referencing the
physical properties.

end_alias

The use of MAT$SMAT1$ in the alias definition establishes the link between material and the boundary element "car" .

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
METAPLANE

METAPLANE
(optional) define a cutting plane for MESHFREE points

Points outside the METAPLANE will be cut off. IDENT should be
preferrably set to %BND_cut% .

The METAPLANE flag takes a number as parameter. METAPLANES
with the same number only reject/delete points if it is outside
all METAPLANES with the same number. The number has to be >=1.

Example:

81

begin_alias{ }
"plane" = " BC$...$ ACTIVES...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$ LAYERO CHAMBER1 METAPLANE1

end_alias

See BND_plane for additional information.
Visualization of a METAPLANE can be turned on for ENSIGHT6 with the
additional flag 'P'.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
MOVE

MOVE

(required) provide a flag for the definition of boundary movement

In the alias section, the MOVE flag selects a MOVE statement for the boundary elements.

Example 1 : defining a MOVE statement and referencing it in the alias section
MOVE ($MOVE_in_x_direction$) = (%MOVE_velocity% , 1.0, 0.0, 0.0) #definition of MOVE

begin_alias{ }

"wall" = " BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVE$MOVE_in_x_direction$ CHAMBER1 " #
referencing the definition of the MOVE statement

end_alias

The corresponding MOVE statement is selected through the variable name $MOVE_in_x_direction$.
If no movement of geometry is involved in the simulation model, there is also the shorthand writing MOVE -1 for this
without having to define a MOVE statement first.

Example 2 : no movement by MOVE-1

begin_alias{ }
"wall" =" BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVE-1 CHAMBER1 "
end_alias

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
MPCCI

MPCCI

(optional) define mpcci index
The MPCCI numbers tell MESHFREE to couple this geometry part with the MpCCl interface.

By default all MPCCls have the index -1, which means no coupling with MpCCl is done.

Example:

begin_alias{ }
"car" =" BC$...$ ACTIVES...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$ MPCCI1 CHAMBER1 "
end_alias

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
POSTPROCESS

POSTPROCESS

(optional) define flag for postprocessing/integration

82

POSTPROCESS defines a name that can be used in integrations over
the boundary, e.g. for %INTEGRATION_BND% . The postprocessing tag
associates for an INTEGRATION statement to which boundary it belongs.

This flag is optional and needs only be supplied if the boundary should
be used by an integration statement.

Example:

INTEGRATION ($INTpressure$) = (%INTEGRATION_BND% , [Y %ind_p% +Y %ind_p_dyn%], [Y%ind_p+Y
%ind_p_dyn%], [Y %ind_p% +Y %ind_p_dyn%], $PPwall$, %INTEGRATION_Header%, "pressure")

begin_alias{ }

"car" =" BC$...$ ACTIVES...$ IDENT%...% MATS...$ TOUCH%...% MOVES$...$ LAYERO CHAMBER1
POSTPROCESS$PPwall$ "

end_alias

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
REV_ORIENT

REV_ORIENT

(optional) flip around orientation of boundary parts upon read-in of geometry files

Invert the orientation of all boundary elements of this alias.

Example :

begin_alias{ }

"WronglyOrientedPart" = "REV_ORIENT BC$...$ ACTIVES...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$
CHAMBERT1 "

end_alias

An very similar functionality is provided in revOrient{ }.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
SMOOTH_LENGTH

SMOOTH_LENGTH

(optional) define flag for smoothing length definition

In the alias section, the SMOOTH_LENGTH flag references a smoothing length for the boundary element it is attached to.

Prerequisite : this method of assigning and defining the smoothing length only works if the UCV parameter USER_h_funct
is either set to

« DSCR or

« ADDS,

else the statements do not have an effect.

Depending on the type of boundary element, the behaviour is different:
« If SMOOTH_LENGTH is attached to a point BND_point, then the condition defined in the SMOOTH_LENGTH will
be evaluated with respect to that point.
« If SMOOTH_LENGTH is used on triangulated boundaries (BND _tria), MESHFREE will sample several positions on
this boundary element and the condition defined in SMOOTH LENGTH will be defined with respect to these
positions.

The smoothing length applies to all points within the CHAMBER . If multiple smoothing lengths per chamber are defined
and attached, then for each point in the chamber all smoothing lengths are evaluated and the final smoothing length is the
minimum over all smoothing lengths.

83

This functionality can for example be used to refine locally around boundary elements.

Warning : Applying a smoothing length to a large geometry is computational very expensive and thus will significantly slow
down MESHFREE in its pointcloud organization step. So it is good practice to avoid assigning a SMOOTH_LENGTH to
large boundary elements.

Example 1: Constant smoothing length attached to a point

USER_h_funct = 'DSCR'

USER _h min="0.1"

USER_h_max = "2.0"

SMOOTH_LENGTH ($SL1$) = (%H_constant% , 0.1) #definition of a (constant) smoothing length $SL1$

begin_boundary_elements{ }
BND_point &dummyPointSmooth& 0 0 0 #defines a point in the origin (0,0,0)
end_boundary_elements {}

begin_alias{ }

"dummyPointSmooth" = " SMOOTH_LENGTH$SL1$ CHAMBERT1 " # establishes the link between the smoothing length
$SL1$ and the chamber.

end_alias

Example 2: Local spherical refinement around boundary alias "RefineAroundThisBE"

USER_h_funct = 'DSCR’

USER_h_min ="0.1"

USER_h_max ="2.0"

SMOOTH_LENGTH ($SL2$) = (%H_spherical% , 0.1, 0.5, 0.1, 1.0) #definition of a (spherical refined) smoothing
length $SL2$

begin_alias{ }

"RefineAroundThisBE" = " BC$...$ ACTIVES...$ IDENT%...% MATS$...$ TOUCH%...% MOVES$...$
SMOOTH_LENGTH$SL2$ CHAMBERT1 " # attach smoothing length $SL2$ to boundary element
end_alias

See SmoothingLength for more information.

MESHFREE - InputFiles - USER_common_variables - ALIAS . AliasForGeometryltems -
SMOOTH_N

SMOOTH_N

(experimental) invoke smoothing of the boundary

EXPERIMENTAL only.
» Each node point ; establishes its local boundary normal by
(Pk,? - Pk,1) x (Pk,a - Pk,l)

- k=AllTrianglesAttachedToPoint
T —

-]l

where pk,i,i = L...IN,, are the node point coordinates of the shape (in most cases triangles N_p=3, sometimes
quads, N_p=4)

« The boundary normal of the MESHFREE point with index § which is situated inside of the triangle with index f is
computed by its shape functions, i.e.

Do ST

j=1...N,

n; =
1 -1l

where N, is the number of nodes of the given boundary element.
« The shape functions are computed for each MESHFREE point in a standard way. The MESHFREE point with index
; situated on the triangle with index E has the shape functions

84

T = E S Py

j=1...N,,

with the requirement > s =1
j=1...Ny

MESHFREE - InputFiles - USER_common_variables - ALIAS . AliasForGeometryltems -
SYMMETRYFACE

SYMMETRYFACE

(optional) definition of the geometry part as symmetryface (influences distance computation)

MESHFREE computes distances for points of the pointcloud to all SYMMETRYFACEs in proximity. The point is only
considered to be inside if this it is inside regarding all different SYMMETRYFACEs.

Example:
begin_alias{ }
"car" =" BC$...$ ACTIVES$...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ CHAMBER1 SYMMETRYFACE1"

"box" =" BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVE$...$ CHAMBER1 SYMMETRYFACE2"
end_alias

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
TOUCH
TOUCH

(required) define the wetting/activation behavior of MESHFREE points along the given boundary part

The TOUCH flag defines when to activate boundary points on these boundary elements.

TOUCH is used in AliasForGeometryltems statements
begin_alias{ }
"car" =" BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%TOUCH_liquid% MOVES$...$ LAYERO CHAMBER1 "
end_alias

There are two flags for general activation/deactivation and three flags for wetting:

TOUCH %TOUCH_always%

TOUCH %TOUCH_never%

TOUCH %TOUCH_liquid%

TOUCH %TOUCH_solid%

TOUCH %TOUCH_geometrical%

%TOUCH_liquid% and % TOUCH_solid% will behave quite similarly. The only difference is in detachment of
points from the boundary. % TOUCH_solid% has an additional criterion how this might occur. The

difference to % TOUCH_geometrical% is in the initial filling: Both for % TOUCH_liquid% and % TOUCH_solid%
interior points very close to the boundary will be projected back to the boundary element in the

initial filling phase. This does not occur for % TOUCH_geometrical% .

The default value if no TOUCH flag is provided is % TOUCH_geometrical% .
Activation can be further controlled with ORGANIZE_ForceTouchCheckAtWalls .
There is one special flag for reflective boundaries:

TOUCH %TOUCH_reflection%
Reflected points will set index %ind_Organize% in Y to %ORGANIZE_WasPushedBackFromBoundary% .

85

List of members:

%TOUCH_always% boundary points always active
%TOUCH_never% boundary points never active
%TOUCH_liquid% boundary points activated by flow (non-geometrical criterion)
%TOUCH_solid% boundary points activated by flow (non-geometrical criterion plus special tear off)
%TOUCH_geometrical% boundary points activated by flow (geometrical criterion)
%TOUCH_reflection% points reflected at boundary
MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem

TOUCH - %TOUCH_always%

%TOUCH_always%

boundary points always active

Boundary points on boundary elements marked with %TOUCH_always% will always be active.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasFor metryltem
TOUCH - %T H_geometrical%

%TOUCH_geometrical%
boundary points activated by flow (geometrical criterion)

Simplest form of activating boundary points by the flow. Based on
ORGANIZE_ForceTouchCheckAtWalls either only free surface points or
both free surface points and interior points will activate boundary

points if they are in their proximity.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

TOUCH - %TOUCH_liquid%
%TOUCH_liquid%

boundary points activated by flow (non-geometrical criterion)

Boundary points on these boundary elements are activated by free surface and interior points (controlled
by ORGANIZE_ForceTouchCheckAtWalls).

In the initial filling phase interior points very close to the boundary will be projected
to the boundary. To avoid this use % TOUCH_geometrical% instead. For additional tear-off
criteria use % TOUCH_solid% .

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

TOUCH - %TOUCH_never%
%TOUCH_never%

boundary points never active

Boundary points on boundary elements marked with %.TOUCH_never% will never be activated.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -

86

TOUCH - %TOUCH_reflection%
%TOUCH _reflection%

points reflected at boundary

This will reflect oncoming interior or free surface points from the boundary
according to the local boundary normal. The %TOUCH_ reflection% flag can also be
set for free surfaces.

Points which have been reflected set their index %ind_Organize% in Y to
%0ORGANIZE_WasPushedBackFromBoundary% .

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryltems -
TOUCH - %TOUCH_solid%

%TOUCH_solid%

boundary points activated by flow (non-geometrical criterion plus special tear off)

Same activation behavior as % TOUCH_liquid% . Also here in the initial filling phase
interior points close to the boundary are projected onto the boundary elements.

The difference to % TOUCH_liquid% is an additional tear-off criterion. Free surface points
will also tear off if

1.) tension forces are pulling the point, and

2.) the velocity in normal direction is non-zero, and

3.) the point was on the boundary for at least one time step.

Additionally, a user-defined tear-off criterion can be specified using
BC_TearOffCriterion . A point will tear off if either the list or the user-defined
criterion is fulfilled.

MESHFREE - InputFiles - USER_common_variables - ALIAS - AliasForGeometryliems -
TWOSIDED

TWOSIDED

(experimental) copy the boundary entity re-orient it, and give other attributes to it

EXPERIMENTAL only.
Example: The alias "box" refers to a boundary element for CHAMBER1 and at the same time re-orientated to a boundary
element for CHAMBER2

begin_alias{ }

"box" =" BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVES$...$ CHAMBER1 TWOSIDED
BC$...$ ACTIVES...$ IDENT%...% MAT$...$ TOUCH%...% MOVE$...$ CHAMBER2 "

end_alias

MESHFREE - InputFiles - USER_common_variables - Abaqusinterpolation

3.1.3. Abaqusinterpolation

abaqus mesh interpolation

MESHFREE provides several ways of interpolation of pressure data to abaqus meshes.
Supported mesh elements are: STRI65, S8R, S3, S4

87

Abaquslinterpolation (1)=(%ABAQUS_ IntpIMidpoint%,3)

directly interpolates (Intpl) pressure data onto mesh element midpoints (MidPoint)

Abaquslnterpolation (1)=(%ABAQUS_AVMidpointShpdNode%,1)

is a two step mapping of data onto mesh element midpoints (MidPoint).

First, the pressure is interpolated on the mesh element nodes (Node) by

a weighted average based on the distance between MESHFREE nodes and Abaqus nodes (shepard interpolation, Shpd).
Then, the data is getting averaged (AV) and this value is set to be the value at the mesh element midpoint.

Abaquslnterpolation (1)=(%ABAQUS_AVMidpointintpINode%,3)

does essentially the same as ABAQUS_AVMidpointShpdNode, but shepard interpolation is
replaced by a second order polynomial fpm interpolation (Intpl)
on the mesh nodes (Node)

Abaquslinterpolation (1)=(%ABAQUS_ShpdMidpoint%,1)
)

directly performs a shepard interpolation (Shpd) onto mesh midpoints (Midpoint)

Abaquslnterpolation (1)=(%ABAQUS _IntpINode%,3)

directly performs a second order polynomial fpm interpolation (Intpl) onto mesh nodes (Node)

MESHFREE - InputFiles - USER_common_variables - BUBBLES

3.1.4. BUBBLES

List of members:

BUBBLE_ forbidden let MESHFREE know, in what regions bubbles cannot be accepted

MESHFREE - InputFiles - USER _common_variables - BUBBLES - BUBBLE_ forbidden

BUBBLE_forbidden
let MESHFREE know, in what regions bubbles cannot be accepted

BUBBLE_forbidden ($Material$) = (MathematicalEquation)

MathematicalEquation : is a typical right hand side expression.
If MathematicalEquation is positive for at least ONE surface point of the bubble (active as well as inactive points), then it is
rejected as a regular
bubble. i.e.
« its pressure is set to zero, i.e. Y%ind_pBubble%==0
« its volume is: Y %ind_volBubble% = -(trueBubbleVolume)

88

Example:

BUBBLE_forbidden ($Material$) = ([-Y %ind_x(1)% - 1.0]) # this expression becomes positive for x
with members x

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions

3.1.5. BoundaryConditions

definition of physical boundary conditions for boundary elements

Boundary conditions are an essential ingredient for the simulation model. They are defined and then attached to boundary
elements in the alias section. They must be provided according to the solver choice.
General Syntax

Boundary conditions for all relevant variables can be defined by:

BC_p ($BCindex$) = RightHandSideExpression # hydrostatic pressure

BC_v ($BCindex$) = RightHandSideExpression # velocity

BCON ($BCindex$,%ind_Var%) = RightHandSideExpression # BCON is a more general keyword to define boundary
conditions

Here, BC_p and BC_v are specialized keywords for pressure and velocity, respectively, and BCON is a more general
keyword to define boundary conditions for arbitrary variables.

These boundary conditions are then related to boundary elements in the alias section (see AliasForGeometryltems) with
the BC -flag:

begin_alias{ }
"BoundaryName" =" ... MOVE$MOVEindex$... BC$BCindex$... SMOOTH_LENGTH$Hindex$... "
end_alias

List of members:
DROPLETPHASE__BC___ Boundary Conditions for Dropletphase

LIQUID__BC__ definition of physical boundary conditions for LIQUID solver

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions -
DROPLETPHASE__BC__

DROPLETPHASE__BC__
Boundary Conditions for Dropletphase

Set boundary conditions for the Dropletphase solver.
List of members:

BC v Velocity boundary Conditions for Dropletphase

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions -
DROPLETPHASE__BC__ - BC. v

BC v
Velocity boundary Conditions for Dropletphase

89

Set velocity boundary conditions for the Dropletphase solver.

List of members:

%BND_COLLISION% velocity boundary condition to represent collisions

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions -
DROPLETPHASE BC - BC v - %BND COLLISION%

%BND_COLLISION%

velocity boundary condition to represent collisions

BC_v ($BC1$) = (%BND_COLLISION% , k_n, e_n, E_a, R_a, mu, SplitFactor, theta)

BND_COLLISION is a velocity boundary condition for particles within a DROPLETPHASE chamber. Particle dynamic
when colliding with a boundary element with this boundary condition is modeled as a mass spring damper model.
Additionally, an adhesive force can be applied, friction can be incorporated, energy dissipated at the boundary element can
be modeled and a model for the roughness of the boundary element can be employed.

The adhesion/collision model is determined by the first five parameters k_n, e_n, E_a, R_a, mu (see DropletCollisions).

Parameter Meaning Il Default

Values

k_n Spring Constant for particle interaction k_ n>=0.0 0.0 (no collision

modeling)
if 0 <= e_n <=1 Coefficient of Restitution (0 ideal plastic, 1.0 ideal between 0 and
en L . . L . 0.0
elastic), if e_n < 0, negative value of the damping coefficient 1 or negative
E_a Adhesive potential difference relative to the particle mass non-negative 0.0 (no adhesion)
R_a Broadness of zone of attraction relative to d30 non-negative 1.0
mu Friction Coefficient non-negative 0.0 (off)
0.0 <= 0.0 (no ener.
SplitFactor Fraction of total dissipated energy in collision dissipated at wall SplitFactor <= o 9y
1.0 dissipated at wall)

0.0 <=theta<= 0.0 (no

theta Roughness: maximum angle of random perturbance of normals .
pi/2 roughness)

Additionally for particle boundary interaction, the two parameters SplitFactor and theta may be specified:

« SplitFactor determines the fraction of energy dissipated by the wall: The energy calculated within the collision is split
up between particle and wall in the given ratio.

« theta is given, the boundary normals will be randomly perturbed in order to model surface roughness. The value of
theta, 6 € [0, 5] , determines the maximum angle between the modified normal vector n* and the original one n

90

Example:

BC_v ($BC1$) = (%BND_COLLISION%, 1.1, .1, 1e-3, 1.0, 0.8, 0.5, 0.02)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC__

LIQUID__BC__

definition of physical boundary conditions for LIQUID solver

Required boundary conditions for LIQUID

For all participating geometry items mandatory boundary conditions must be defined depending on the choices for the
solver.
V_-

If the scheme v--is chosen, then boundary conditions for the velocity and the hydrostatic pressure must be specified by
the user.
vp-

If the scheme vp- is chosen, then boundary conditions for the velocity, the hydrostatic pressure and the dynamic pressure
must be given by the user.

The boundary condition for hydrostatic pressure and dynamic pressure must be chosen suitable to each other.
Temperature

If temperature is also included in the simulation, then also boundary conditions for the temperature must be defined.
Turbulence

If the k-epsilon turbulence model is included, then boundary conditions for k and epsilon must be defined.

91

List of members:

BC_CNTFORCE force contact between phases

BC_eps turbulence-epsilon boundary conditions

BC k turbulence-k boundary conditions

BC_p pressure boundary conditions

BC_S stress tensor boundary conditions

BC T temperature boundary conditions

BC_TearOffCriterion establish a tear-off criterion for release from walls

BC v velocity boundary conditions

BC_WettingAngle define the contact angle between free surface

BCON general setting of boundary conditions

BCON_CNTCT general setting of contact boundary conditions
MESHFREE - InputFiles - USER_common variables - BoundaryConditions - LIQUID BC
BCON

BCON

general setting of boundary conditions

Set boundary conditions for any variable (see Indices) for which a partial differential equation (PDE) has to be solved.
The general syntax is

BCON ($BCflag$,%ind_Variable%) = RightHandSideExpression

This is especially important in the framework of CODI . For all variables used in a CODI -environment, this boundary
condition
feature is important and completes the setup of the PDE.

Example:

CODI_D ($MATS$,%indU_userdefined%) = 10000

CODIL_Q ($MATS$,%indU_userdefined%) = 1

BCON ($BND1$,%indU_userdefined%) = (%BND_DIRICH% , 0)
BCON ($BND2$,%indU_userdefined%) = (%BND_NEUMANN% , 0)

However, this is a general function. The convenience functions BC_... are shortcuts to BCON :
BC_v (BND) -> BCON (BND,%ind_v(1)%)

BC_p (BND) -> BCON (BND,%ind_p%)

BC_T (BND) -> BCON (BND,%ind_T%)

BC_k (BND) -> BCON (BND,%ind_k%)

BC_eps (BND) -> BCON (BND,%ind_eps%)

BC_S (BND) -> BCON (BND,%ind_Sxx%)

92

List of members:
%ind_c% correction pressure boundary conditions

%ind_p_dyn% dynamic pressure boundary conditions

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .

BCON - %ind p dyn%

%ind_p_dyn%

dynamic pressure boundary conditions

BCON ($BCindex$,%ind_p_dyn%) = (%BND_slip%)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall% , OPTIONAL:RegularizationParameter ,
OPTIONAL:LimitationOfAccelerationOfBoundary)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall_nosl% , OPTIONAL:RegularizationParameter ,
OPTIONAL:LimitationOfAccelerationOfBoundary)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_NEUMANN% , Value)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_VONNEU% , Value) # legacy only
BCON ($BCindex$,%ind_p_dyn%) = (%BND_DIRICH% , Value)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_free_implicit%)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_free%)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_none%)

BCON ($BCindex$,%ind_p_dyn%) = (%BND_AVERAGE%)

List of members:

%BND_wall% quasi-stationary dynamic pressure boundary condition
%BND_wall_nosl|% quasi-stationary dynamic pressure boundary condition
%BND_inflow% quasi-stationary dynamic pressure boundary condition
%BND_slip% direct dynamic pressure boundary conditions

%BND_AVERAGE%

%BND_VONNEU%
function in normal direction)

%BND_NEUMANN%%
function in normal direction)
%BND_DIRICHY% classical Dirichlet condition (prescribe the function value at the boundary)

%BND _outflow%
boundary values
%BND_none% treat the boundary point as if it would be an interior point
%BND_free% direct dynamic pressure boundary conditions at free surface
%BND_free_implicit% direct dynamic pressure boundary conditions at free surface

%BND_free_implicit_InContact_ direct dynamic pressure boundary conditions at phase boundary
explicit%

weighted average of the pressure values in the neigborhood of the boundary point

Neumann boundary conditions for the pressure (require a dedicated slope of the

Neumann boundary conditions for the pressure (require a dedicated slope of the

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC_

relaxed Dirichlet conditions, penalize differences between the current and the requested

93

BCON - %ind_p_dyn% - %BND_AVERAGE%

%BND_AVERAGE%

weighted average of the pressure values in the neigborhood of the boundary point

BCON ($Material$,%ind_p_dyn%) = (%BND_AVERAGE%)

We define the average value of the pressure in the neighborhod of boundary point and assign it to the boundary point
2> Wi (Payn),
(j]) — jEN{ ?1?"—.)
“nly S Wy

JEN;iF]

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON - %ind p dyn% - %BND DIRICH%

%BND_DIRICH%

classical Dirichlet condition (prescribe the function value at the boundary)

BCON ($Material$,%ind_p_dyn%) = (%BND_DIRICH% ,p_0)
(pdyn).i = Pao

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BCON - %ind_p dyn% - %BND_NEUMANN%

%BND_NEUMANN%

Neumann boundary conditions for the pressure (require a dedicated slope of the function in normal direction)

BCON ($Material$,%ind_p_dyn%) = (%BND_NEUMANN% , slope) # this is the correction version, this type of
boundary conditions goes back to Carl Gottfreid Neumann,

BCON ($Material$,%ind_p_dyn%) = (%BND_VONNEU% , slope) # originally we wrongly assumed the boundary
condition goes back to JOhn von Neumann (famous for his stability analysis of PDE)

(8{;?1&) i = slope

The user has to provide a useful value for the slope.
The boundary conditions %BND_wall% and %BND_slip% are also of Neumann type. Here, MESHFREE computes the

value of the slope by itself.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BCON - %ind_p_dyn% - %BND_VONNEU%

%BND_VONNEU%

Neumann boundary conditions for the pressure (require a dedicated slope of the function in normal direction)

BCON ($Material$,%ind_p_dyn%) = (%BND_NEUMANN% , slope) # this is the correction version, this type of
boundary conditions goes back to Carl Gottfreid Neumann,

BCON ($Material$,%ind_p_dyn%) = (%BND_VONNEU% , slope) # originally we wrongly assumed the boundary
condition goes back to JOhn von Neumann (famous for his stability analysis of PDE)

94

(&;ﬁm) i = slope

The user has to provide a useful value for the slope.
The boundary conditions %BND_wall% and %BND_slip% are also of Neumann type. Here, MESHFREE computes the
value of the slope by itself.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON - %ind p dyn% - %BND_free%

%BND _free%
direct dynamic pressure boundary conditions at free surface

BCON ($BCindex$,%ind_p_dyn%) = (%BND_free%)
BCON ($BCindex$,%ind_p_dyn%) = (%BND_free% , OuterDynamicPressure)
BCON ($BCindex$,%ind_p_dyn%) = (%BND_free% , OuterDynamicPressure, RelaxationFactor)

The pressure at the free surface is given by the dynamic, viscous stretch of the free surface. The general condition is:

T outer outer
Phyd + Pdyn = 1" Svise + ShodyT +Payn T+ Puyd

Again, the hydrostatic part is already taken care of such that the remaining part for the dynamic pressure is (
OuterDynamicPressure = pggf;f”‘):

T outer
Pdyn = T Syigcn +pdyn

If the RelaxationFactor is used, we have the constraint

pfdlsﬂ = RelaxationFactor - n” Sien + Py + (1 — RelaxationFactor) - pj,,,.

This will only be applied, if the v-- solver is active for the present boundary point.

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON - %ind p dyn% - %BND_free implicit%

%BND_free_implicit%
direct dynamic pressure boundary conditions at free surface

BCON ($BCindex$,%ind_p_dyn%) = (%BND_free_implicit%)
BCON ($BCindex$,%ind_p_dyn%) = (%BND_free implicit% , OuterDynamicPressure)

The pressure at the free surface is given by the dynamic, viscous stretch of the free surface. The general conditions is:

T outer outer
Phyd + Pdyn = 1" Svise + ShodyT +Payn T+ Puyd

Again, the hydrostatic part is already taken care of such that the remaining part for the dynamic pressure is (
OuterDynamicPressure = pggf;f”‘):

95

T outer
Payn = 1" Syisel + Payn

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BCON - %ind p dyn% - %BND_free_implicit_InContact_explicit%

%BND_free_implicit_InContact_explicit%
direct dynamic pressure boundary conditions at phase boundary

BCON ($BCindex$,%ind_p_dyn%) = (%BND_free_implicit_InContact_explicit%)
The pressure condition on phase boundaries is:

n+l T n+1 T n+1 n
pdyn =n - Svisc ‘n—n - (Svisc)Qpp T+ (pdyn)opp

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON - %ind p dyn% - %BND_inflow%

%BND inflow%
quasi-stationary dynamic pressure boundary condition

BCON ($BCindex$,%ind_p_dyn%) = (%BND_inflow%)
BCON ($BCindex$,%ind_p_dyn%) = (%BND _inflow% , OPTIONAL:RegularizationParameter)

From the momentum equation

dv

1 1 1,
— 4 - , - m=-v' 8
7 + p Vpuya + F Vpayn pv +g

the boundary conditions can be derived by multiplying the boundary normal from left and ignoring the terms connected to
the hydrostatic pressure, i.e.

d ,
PHT . EU + % = nT : (stvisc)T

As the boundary points are not necessarily moving with fliud velocity @ , we use

dv dv
=L+ @ —v) (o7 V),

where Uy is the velocity the boundary point is actually moving with and %ﬂ == % is an easy, first order time

difference
in order to approximate the velocity change of a MESHFREE point moving with ¥y .

Regularization: The RegularizationParameter is a small value, something like 1.0e-4. In order to regularize the boundary
condition,
the classical Neumann-type condition

96

apdyn A
on
is turned into a Nusselt-type condition

0Py RegularizationParameter
% =A aF & % Pdyn s

where h is the local smoothing length at the boundary point.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC_ _
BCON - %ind p dyn% - %BND none%

%BND _ none%
treat the boundary point as if it would be an interior point

ATTENTION: this type of boundary condition is, theoretically, not valid in general if used with
FLIQUID_ConsistentPressure_Version =?1?? | i.e. a 1 at the second digit. Here, the accelarations are considered to be
quasistationary,

hence %BND_none% will make a mistake if used in a non-quasistationary setting.

BCON ($Material$,%ind_p_dyn%) = (%BND_none% , OPTIONAL.: AllowBoundaryAcceleration ...
OPTIONAL: WeightKernel)

With the same ansatz as in Alternative DPA , we solve for the boundary point ; the equation
N(i)

P r 1 target 1 T]- Larget]- p% + P
z Wi; Xj — %) - ;VP,- +t3 (xj —xi)" - ; z Wij vy (pj — pi)
J

& J

Remember that 1 tharEEL

provide the optlon
AllowBoundaryAcceleration: has to be bigger than zero.
If the optional parameter is given, we enhance the equation to

N (i) N(i)

1 1 1 dvBND 1 p; i
Z Wi ((X_; - X-i)T . ;Vp;arget + E (X_-j - Xi)T- (;vpl:arget)) Z Wi, (_M (P_-j — pi))
)

i 2 pipj

might contain only the stationary part of the substantial derivative % s (vT : V) v , SO we

where we restrict the magnitude of the acceleration of the boundary to the optional value given, i.e.

H < AllowBoundaryAcceleration

In order to allow the true acceleration, set the value hugh enough. DEFAULT: 0

WeightKernel: the %BND_none% conditions can be put into practice ONLY treating the boundary point acording to
AlternativeDPA .
This requires a weight kernel, which is defined by this optional parameter. If set to 0, the classical Neumann ctencil is used

as a weight. Otherwise, W;; = m:p(o - ?”QJ) .

The value of WeightKernel: then defines the parameter &« . DEFAULT: 0

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC
BCON - %ind p dyn% - %BND_outflow%

97

%BND _outflow%
relaxed Dirichlet conditions, penalize differences between the current and the requested boundary values

BCON ($Material$,%ind_p_dyn%) = (%BND_outflow% , p_0, alpha)

Opayn
(Payn); + ah; - (%) =Po

Rewriting this equation gives
apdyn - 1 1

an_ i = EPU - Epdyni

that means we prescribe the slope of the pressure based on the difference between the current and requested function
values.
Thus, it reveals the penalty character of this type of boundary condition, as a big alpha alpha emphasizes the function

slope,
whereas a small alpha forces the boundray value to assume p_0O .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC_
BCON - %ind p dyn% - %BND_slip%

%BND _slip%
direct dynamic pressure boundary conditions

From the momentum equation
dv

1 1 1
— + = Vphya + = Vpayn = =V S
FTi ! Ph;,d+p Pdyn p +g
the boundary conditions can be derived by multiplying from left with the boundary normal
dv 1 3}'3'11 rdd 1 3pd ' 1 T
T Y yn T T T

ruin el - =-n -(V'S) +n' -g.

dt p On + p On p () g

Since the BC for the hydrostatic part is already taken care of, the remaining equation for dynamic pressure is

dv 1 dpay 1 T
'H.T' E E% = EHT . (VTSvisc) '

which finally leads to

Opayn T dv T (oT T
Bn = P(n d‘." + mn (V Svlsc) .

Un+J. —p™

For this type of boundary condition, the acceleration term is numerically approximated by nT . ":{;': ~nT. -

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC__
BCON - %ind p dyn% - %BND_ wall%

%BND_wall%

quasi-stationary dynamic pressure boundary condition

BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall%)
BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall% , OPTIONAL:RegularizationParameter ,
OPTIONAL:LimitationOfAccelerationOfBoundary)

From the momentum equation

98

dv

df Vph_\,d + - VPpdyn = —VTS+9
the boundary conditions can be derived by multiplying the boundary normal from left:
d 1 Opny 1 dpay 1
T].T'—U“i‘— ph}d+_ pd}n:—nT-(vTS)T—i—nT-g
dt p on p On p

Let us extract the part for the dynamic pressure, which is:
1 Ipayn T dv 1 T T
—— =N - — n (V8.

P an dt + (nsc)

In order to bring in the acceleration of the boundary, we choose an observation point that travels with the moving
boundary, so we have (zero addition)

v = (U - Uiu)+1?w

where v, is the travelling velocity of the observation system. The total time derivative of this term yields

dv) AV

pril A C Rl R

We can rewrite the first term as

d
_, (U - Uw) = a (Uw ((U 'U.w ’ V) (U - U"”)

and under the assumption of quasistationary flow in the travelling observation system, we have

d
dt (v —vy) = ((U - Uw)T . V) (v —vw)

Finally, the Neumann condition imposed on the dynamic pressure is

1 Opayn : = !
p It;c: S (((U —vy)" - V) (v—vy)+ E”q”) N ?JHT' (VTSM'BC) =

4
o]

The quasistationary term can be rewritten in terms of the n-, a-, and b- directions, i.e. the normal (n) and the two tangential
directions (a,b) of the wall, which form a perpendicular system:

nT - ((v—v,)7 V) (v —v,) =nT(v-v,) Zn(v-v,)+
al (v —wv,)- %(HT(U — Uy))+
bT[v — V) - %(HT(U — V)

The first term is usually zero, if there is no penetration through the wall.
The other two terms are nonzero, if there is tangential slip. In this case, they represent the centrifugal forces, if sliding
along a curved boundary.

Regularization: The RegularizationParameter is a small value, something like 1.0e-4. In order to regularize the boundary
condition,
the classical Neumann-type condition
3den -
on

is turned into a Nusselt-type condition

Opay RegularizationParameter
% =4 -+ g h Pdyn .

where h is the local smoothing length at the boundary point.

LimitationOfAccelerationOfBoundary: if set > 0.0, MESHFREE limits/cuts the current (i.e. measured) acceleration of the
boundary elements down to this magnitude.

99

IMPORTANT:
« In the case of %BND_wall% -> Vw = VtrueWallVelocity

« In the case of %BND_wall_nos|% -> v,, = veglwhichprovidesegln® ((U — vy T V) (v—vy)=0#

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON - %ind p dyn% - %BND_wall nosl%

%BND_wall_nos|%
quasi-stationary dynamic pressure boundary condition

BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall_nos|%)
BCON ($BCindex$,%ind_p_dyn%) = (%BND_wall_nos|% , OPTIONAL:RegularizationParameter ,
OPTIONAL:LimitationOfAccelerationOfBoundary)

Same as %BND_wall% .

From the momentum equation
dv 1 1 1
— 4 = Vpnya + = Vpayn = -V S +g
a p P p

the boundary conditions can be derived by multiplying the boundary normal from left:

duv lé‘ph.d lé‘pd. 1 T
T GV 10phy 2%dyn 1T (gTg T
dt p On * p on pn (VE5) +nt.g

Let us extract the part for the dynamic pressure, which is:
1 Ipayn r dv 1 T T
- =-n' -—+-n (V' Sy
P on dt + P) (msc)

In order to bring in the acceleration of the boundary, we choose an observation point that travels with the moving
boundary, so we have (zero addition)

v=(0—vy)+ vy

where v, is the travelling velocity of the observation system. The total time derivative of this term yields

dv o dv
E:E(U_Uiu)‘f’ d}:u

We can rewrite the first term as

d d
s (v —vy) = 5 (v —vy) + (v—v,)T - V) (v—v,)

and under the assumption of quasistationary flow in the travelling observation system, we have
d

dt (v—vy) = ((U - U!H)T ' V) (v - vw)

Finally, the Neumann condition imposed on the dynamic pressure is

L0payn _ _ 7 —)T _ 4 1r wTs. \T.—
" on = =T ((('U 'Um) V) [TJ Uiu)+dtviu +Pn (V Smsc) =

A
Il
The quasistationary term can be rewritten in terms of the n-, a-, and b- directions, i.e. the normal (n) and the two tangential
directions (a,b) of the wall, which form a perpendicular system:
n’ (v —vy,)T V) (v—vy) =nT(v—vy,)- %(HT(U — vy)+
a,j:(v — V) - %(HT(U — V)t
b (v —vy)- %(HT(U)

The first term is usually zero, if there is no penetration through the wall.
The other two terms are nonzero, if there is tangential slip. In this case, they represent the centrifugal forces, if sliding
along a curved boundary.

100

Regularization: The RegularizationParameter is a small value, something like 1.0e-4. In order to regularize the boundary
condition,
the classical Neumann-type condition
Opay
Pdyn — A
on

is turned into a Nusselt-type condition

RegularizationParameter
3}33(:2, - =A + : h Pdyn

where h is the local smoothing length at the boundary point.
LimitationOfAccelerationOfBoundary: if set > 0.0, MESHFREE limits/cuts the current (i.e. measured) acceleration of the

boundary elements down to this magnitude.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BCON_CNTCT

BCON_CNTCT

general setting of contact boundary conditions

This feature rules the contact conditions (interphase conditions) between contacting phases.
The general syntax is

BCON_CNTCT ($BCflag$,%ind_Variable%) = RightHandSideExpression

Contact can occur between regular boundaries of two chambers or free surface points of two chambers.
Contact cannot appear between a free surface point of one chamber with a regular boundary point of another chamber.

Note: For most cases, we recommend using the Darcy approach, see TwoPhaseDarcy , instead of explicit interphase
conditions.

List of members:

%ind_T% temperature boundary conditions at interfaces
%ind_v(1)% velocity boundary conditions at interfaces
MESHFREE - InputFiles - USER_common variables - BoundaryConditions - LIQUID BC .

BCON_CNTCT - %ind_T%

%ind_T%
temperature boundary conditions at interfaces

This feature rules the contact conditions (interphase conditions) for the temperature between contacting phases.
It must be added to the BC_T condition of the corresponding alias. There are two possible conditions that can
be specified here. Suppose we have two contact boundaries contact_boundary1 and contact_boundary?2.

The syntax for modeling ideal heat transition (ideal contact) is

BC_T ($contact_boundary1$,%ind_T%) = (%BND_NEUMANN% , 0)
BCON_CNTCT ($contact_boundary1$,%ind_T%) = (%BND_contact%)

BC_T ($contact_boundary2$,%ind_T%) = (%BND_NEUMANN% , 0)
BCON_CNTCT ($contact_boundary2$,%ind_T%) = (%BND_contact%)

101

The software automatically takes care of which phase the Dirichlet condition
T =Topp

and the heat flux condition

A— =\

aT m—lopp
on PP on

are set to have complementary conditions at the contact point. This is decided based on the two heat conductivities
(lambda).

The syntax for modeling heat transition with a user given heat transfer coefficient ar is

BC_T ($contact_boundary1$,%ind_T%) = (%BND_ROBIN%, , [Yopp(%ind_T%)])
BCON_CNTCT ($contact_boundary1$,%ind_T%) = (%BND_ROBIN%,)

BC_T ($contact_boundary2$,%ind_T%) = (%BND_ROBIN%, , [Yopp(%ind_T%)])
BCON_CNTCT ($contact_boundary2$,%ind_T%) = (%BND_ROBIN%,)

In this case the Dirichlet condition (see ideal contact) is replaced by

oT
Ao = T~ Topy).

Note that BCON_CNTCT is an additional condition that is only active when the boundary points in their neighbourhood
detect
points of the other phase. Otherwise, this condition falls back to BC T .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BCON_CNTCT - %ind v(1)%

%ind_v(1)%
velocity boundary conditions at interfaces

List of members:
%BND_slip_InContact% velocity boundary conditions at interfaces, implicit

%BND_slip_InContact_Explicit% velocity boundary conditions at interfaces, explicit

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BCON_CNTCT - %ind v(1)% - %BND_slip_InContact%

%BND_slip_InContact%
velocity boundary conditions at interfaces, implicit

The opposite phase is seen as (moving) wall, along which a slip condition is realized. In all other aspects, this boundary
condition is very similar to %BND_slip% .

BCON_CNTCT ($BCindex$,%ind_v(1)%) = (%BND_slip_InContact% , FrictionCoefficient, ControlThicknessMomentum)

FrictionCoefficient: Viscous friction in the sense

St a=a (" -vlth a

102

Here, a is the FrictionCoefficient, o = () would lead to pure slip, & — oc would lead to pure no-slip.

If the turbulence model is in action, the effective friction coefficient is given by ey = tgyrp + @ , where
QXpurh = Ypurb (k C) :

v:};;?l is the local velocity of the opposite phase (contact phase) at the next time level.

ControlThicknessMomentum: Incorporation of the momentum balance into the boundary condition, especially important
for big Re-numbers.
The thickness of the momentum control cell is ControlThicknessMomentum*H (smoothing length).

Make sure to set the ControlThicknessMomentum to ZERO if using EULER , EULERIMPL or EULEREXPL!

MESHFREE - InputFiles - USER_common variables - BoundaryConditions - LIQUID BC .
BCON_CNTCT - %ind v(1)% - %BND_slip_InContact Explicit%

%BND_slip_InContact_Explicit%
velocity boundary conditions at interfaces, explicit

The opposite phase is seen as (moving) wall, along which a slip condition is realized.

BCON_CNTCT ($BCindex$,%ind_v(1)%) = (%BND_slip_InContact_Explicit% , FrictionCoefficient,
ControlThicknessMomentum)

FrictionCoefficient: Viscous friction in the sense

St a=a " -v))-a

Here, « is the FrictionCoefficient, oy = () would lead to pure slip, &« — o¢ would lead to pure no-slip.

If the turbulence model is in action, the effective friction coefficient is given by aefy = Qvgyry + @ , where
Dpyrh — Xiyrd (k: C) :

UL"W is the local velocity of the opposite phase (contact phase) at the current time level.

ControlThicknessMomentum: Incorporation of the momentum balance into the boundary condition, especially important
for big Re-numbers.
The thickness of the momentum control cell is ControlThicknessMomentum*H (smoothing length).

Make sure to set the ControlThicknessMomentum to ZERO if using EULER , EULERIMPL or EULEREXPL!

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_CNTFORCE

BC_CNTFORCE

force contact between phases

BC_CNTFORCE ($BCindex$) = 1.0
default: BC_CNTFORCE ($BCindex$) = 0.0

Force the contact to the other phase (chamber) if in the neighborhood.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_T

BC T
103

temperature boundary conditions

BC_T (xyz) = (%BND_inflow% , inflow boundary condition)
BC T (xyz) = (%BND_outflow% , outflow boundary condition)

BC_T (xyz) = (%BND_ROBIN% , alpha, T_opp)

BC_T (xyz) = (%BND_CAUCHY% , alpha, T_opp) # see %BND_ROBIN%

List of members:

HeatEquation1D

%BND _inflow%
%BND_wall%
%BND_wall_nosl%
%BND _outflow%
%BND _free%
%BND_far_field%
%BND_ROBIN%

%BND_RADIATION
%

%BND_AVERAGE%
%BND_DIRICH%
%BND_NEUMANN%%

%BND_NUSSEL%

MESHFREE -

InputFiles -

Solves 1D heat equation for each boundary point. Can be used for temperature boundary

condition.

temperature inflow boundary condition
temperature wall boundary condition
temperature wall no-slip boundary condition
temperature outflow boundary condition

free surface boundary condition for temperature
far-field temperature boundary condition

Robin boundary condition

applies heat flux at the boundary due to radiation

weighted average from the inner points
temperature Dirichlet boundary condition
temperature Neumann boundary condition

temperature Nusselt boundary condition

USER_common_variables -

BoundaryConditions -

LIQUID__BC__ -

BC_T - %BND_AVERAGE%

%BND_AVERAGE%

weighted average from the inner points

#UCVCODE

BC_T ($BOundaryName$) = (%BND_AVERAGE%, OPTIONAL: useOnlylnnerPoints)

Applies weighted average in the Shepard sense:

an-ints

> Wa Tt

gl — k=L
1

anints

3 Wi
k=1

If the oprional parameter is 1, then the weighted average is computed only with respect to the inner points, i.e.

104

Npm'nts 1
S Wiyt
n+1 k=1
Té =

Npm'nts

> Wi
k=1

with T3, = 0 if i denotes a boundary point.

MESHFREE - InputFiles - USER_common_variables -

BoundaryConditions -

LIQUID__BC__ -

BC_T - %BND_DIRICH%
%BND_DIRICH%

temperature Dirichlet boundary condition

Dirichlet (first-type) boundary condition for temperature.

T|P=C!’

Syntax:
BC_T (xyz) = (%BND_DIRICH% , ¢)

Example:

BC_T ($wall$) = (%BND_DIRICH% , 400)

Sets the temperature at the boundary with BC -flag $wall$ to 400 Kelvin.

Optional: Result of 1D heat equation can be used by keyword %HEAT_EQ_1D_BC% (see HeatEquation1D).

Example:

BC_T ($wall$) = (%BND_DIRICH% , [&T_BND&], 0.0, %HEAT _EQ_1D_BC%)

Replaces the temperature at the boundary & T_BND& by the result %ind_T1D(1)% of the 1D heat equation. So the value

&T_BND& is ignored in this case!

MESHFREE - InputFiles - USER_common_variables -

BoundaryConditions -

LIQUID__BC__ -

BC_T - %BND_NEUMANN%
%BND_NEUMANN%

temperature Neumann boundary condition

Neumann (second-type) boundary condition for temperature.

Syntax:
BC_T (xyz) = (%BND_NEUMANN% , &)

Example 1:
Constant temperature gradient

105

BC_T ($wall$) = (%BND_NEUMANN% , 10)

Applies a constant temperature gradient of 1[}% at the boundary with BC -flag $wall$.

Example 2:
Constant heat flux

begin_alias{ }

"heatflux" = "100" # W/m"2
"heatConductivity" = "2" # W/(mK)
end_alias

BC_T ($wall$) = (%BND_NEUMANN% , [&heatflux& / &heatConductivity&])

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions -

BC_T - %BND_NUSSEL%

%BND_NUSSEL%

temperature Nusselt boundary condition

Applies the Nusselt boundary condition for temperature at the boundary.

3—T = o+ BT,
on |

where o is the flux and 3 is the flux of higher order.
Syntax:
BC_T (BC_index) = (%BND_NUSSEL% , & , 3)

Example:

BC_T ($wall$) = (%BND_NUSSEL% , 10, 0.5)

Applies a flux with oy = 10 and 3 = (.5 at the boundary with BC -flag $wall$.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions -

BC_T - %BND_RADIATION%

%BND_RADIATION%
applies heat flux at the boundary due to radiation

Applies a heat flux at the boundary according to the equation

oT
=5),

where % = ge with g the Stefan-Boltzmann constant and e the emissivity.
) is the heat conductivity of the material and Tj, the reference temperature.

LIQUID_ BC__ -

LIQUID_ BC__ -

106

Syntax:
BC_T (xyz) = (%BND_RADIATION%, « , T})

Example:

BC_T ($wall$) = (%BND_RADIATION%, 1.69E-3, 300)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC T - %BND ROBIN%

%BND_ROBIN%
Robin boundary condition

In general, a Robin (third-type) boundary condition is a linear combination of a Dirichlet boundary condition (
%BND_DIRICH%)
and a Neumann boundary condition (%BND_NEUMANN%) of the form

For the temperature T, this can be used to describe how the convective heat flux across the
boundary/interface depends on the difference between the temperature of the material at the
boundary/interface and the temperature on the opposite side

arT
—Ag = G‘(T - Tc-pp);

where } is the heat conductivity of the material, «¢ is a proportionality coefficient
for the convective heat flux across the boundary/interface, and 15y, is the temperature
on the opposite side.

Syntax:
BC_T (xyz) = (%BND_ROBIN% , a , Topp)

Example:

BC_T ($wall$) = (%BND_ROBIN% , 10.0, 500.0)

There is a third optional parameter setting the thickness of the control element. A good value
is 0.3 .

Note: This type of boundary condition is sometimes known as 'Cauchy boundary condition’, but the name is ambiguous.
For backward compatibility, the flag %BND_CAUCHY% has the same effect as %BND_ROBIN% .

Optional: Result of 1D heat equation can be used by keyword %HEAT_EQ_1D_BC% (see HeatEquation1D).
Example:

BC_T ($wall$) = (%BND_ROBIN% , [&convective_heat_trans_coeff&], [&Topp&], 0.0, %HEAT_EQ_1D_BC%)

Replaces the temperature on the opposite side Ty, by the result %ind_T1D(1)% of the 1D heat equation. So the value
&Topp& is ignored in this case!

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC_T - %BND_far field%

107

%BND far_field%
far-field temperature boundary condition

Dirichlet (first-type) boundary condition which sets the value to
the current temperature: %BND_DIRICH% with T = T, prent -

Syntax:

BC_T (xyz) = (%BND_far_field%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC_ T - %BND_free%

%BND _free%
free surface boundary condition for temperature

Default temperature boundary condition for free surfaces.
Same as %BND_NEUMANN% with g_?; =0.

Syntax:

BC_T (xyz) = (%BND_free%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_T - %BND_inflow%

%BND_inflow%

temperature inflow boundary condition

Dirichlet (first-type) boundary condition which automatically sets
the boundary value to the current temperature (i.e. the temperature is not supposed to change).

Syntax:
BC_T (xyz) = (%BND_inflow%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC T - %BND_outflow%

%BND _outflow%
temperature outflow boundary condition

This boundary condition adapts based on the major flow direction near the outflow boundary.

If the relative velocity of the MESHFREE point to the boundary is pointing outwards, we assume a Neumann (second-type)
boundary

condition, i.e. %BND_NEUMANN% with g_?; =0.

If, however, the relative velocity is pointing inwards, we assume a Dirichlet (first-type) boundary condition,
i.e. %BND_DIRICHY , with initial temperature T = T}, .

Syntax:

BC_T (xyz) = (%BND_outflow?)

108

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_T - %BND_wall%

%BND_wall%
temperature wall boundary condition

Same as %BND_NEUMANN% with g% =1 .

Syntax:

BC_T (xyz) = (%BND_wall%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BC_T - %BND_wall_nosl|%

%BND_wall_nosl%
temperature wall no-slip boundary condition

Same as %BND_NEUMANN% with g_?; =0 .
There is no difference to %BND_wall% .

Syntax:
BC_T (xyz) = (%BND_wall_nos|%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC T - HeatEquation1D

HeatEquation1D
Solves 1D heat equation for each boundary point. Can be used for temperature boundary condition.

Solves the 1D heat equation
LT _ 0 (or
et T or "o
for each boundary point. The 1D points are always equidistantly distributed and the number of points can be controlled by
the
common variable NB_POINTS_BC_HEAT_EQUATION_1D . The boundary conditions for the 1D equation are Robin type

conditions.
At the interface MESHFREE - 1D we use

orT
/\1D§ = in(TFinid — T1D)

and at the interface 1D - outer surrounding we use

/\ = — pu T _Tam ien
1D5$ o t(1D b t)

The physical properties for the 1D equation are specified in the following sense:
Syntax:

HEAT_EQ_1D(BC_wall,%ind_xxx%) = (TotalLength, Firstinterval, PhysicalPropFirstinterval, SecondInterval,
PhysicalPropSecondinterval, etc.)

109

where %ind_xxx% stands for %ind_T% , %ind LAM% , %ind_r% or %ind CV% .

« TotalLength is the total length of the 1D line
Firstinterval is the length of the first subpart of 1D line
PhysicalPropFirstinterval is the constant value for %ind_xxx% within the first subpart
Secondinterval is the length of the second subpart of 1D line
PhysicalPropSecondlnterval is the constant value for %ind_xxx% within the second subpart
- etc.

Exception for %ind_T% : The temperature needs an additional parameter for the outer surrounding which must be always
the last entry in HEAT_EQ_1D(BC_wall,%ind_T%).

Example: Modelling of an insulation liner around a cylinder, which consists of two different materials.

HEAT _EQ_1D(BC_wall ,%ind_T%) = (&liner_thickness& , &liner_end_interval1& , &TEMP_alu& ,
&liner_end_interval2& , &TEMP_carbon& , &TEMP_ambient&)

HEAT _EQ_1D(BC_wall ,%ind_LAM%) = (&liner_thickness& , &liner_end_intervall& , &LAM_alu& ,
&liner_end_interval2& , &LAM_carbon&)

HEAT _EQ_1D(BC_wall ,%ind_r%) = (&liner_thickness& , &liner_end _intervali& , &RHO_alu& ,
&liner_end_interval2& , &RHO_carbon&)

HEAT_EQ_1D(BC_wall ,%ind_CV%) = (&liner_thickness& , &liner_end_intervall& , &CV_alu& ,
&liner_end_interval2& , &CV_carbon&)

The heat transfer coefficients @in, Qiout must be specified by

HEAT EQ_1D_TRANSFER_COEFF_INTERNAL(BC_wall) = [&alpha_in&]
HEAT EQ_1D_TRANSFER_COEFF_EXTERNAL(BC_wall) = [&alpha_out&]

The results of all 1D heat equations are stored in %ind_T1D(i)% , i = 1:NB_POINTS_BC_HEAT_EQUATION_1D+1. To
use these results in the MESHFREE boundary

conditions, use the keyword %HEAT_EQ 1D _BC% (see %BND_ROBIN% and %BND_DIRICH%). Then the
corresponding temperature value in the

MESHFREE boundary condition is replaced by %ind_T1D(1)% .

Example:

BC_T (BC_wall) = (%BND_DIRICH% , [&T_BND&], 0.0, %HEAT EQ_1D_BC%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC_TearOffCriterion

BC_TearOffCriterion
establish a tear-off criterion for release from walls

BC_TearOffCriterion (BC_name) = (Expression1, Experssion2, ...)

A MESHFREE point, attached to a wall, can be released from the wall and turned into a free surface point,
if all the given expressions on the right hand side are positive. The expressions are of
the form RightHandSideExpression , the typical standard.

BC_name is the BC -flag to be given in the ALIAS definition of the boundary, i.e.
begin_alias{ }
"AliasName" =" ... BCBC_name ... "

end_alias

Example:
110

BC_TearOffCriterion ($wall$) = ([(Y %ind_TearOff% -0.5)] , equn{ $EQN_TearOff$ })

begin_equation{ $EQN_TearOff$ }

(-7)*Y %ind_p_dyn% /Y %ind_r% - (Y %ind_v(1)% -Y %ind_v_p(1)%)*2 - (Y %ind_v(2)% -Y %ind_v_p(2)%)"2 - (Y
%ind_v(3)% -Y %ind_v_p(3)%)*2 - 1000.0/Y %ind_r% # threshold

end_equation

This criterion stems from the theoretical ansatz given here .

The last term "1000.0/Y%ind_r%" is a threshold of 1000 Pa in order to avoid release of wall points due to numerical
noises.

The condition "[(Y%ind_TearOff%-0.5)]" chooses only those boundary points which are adjacent to a free surface.

The tear off criterion also works for free surface points that are in contact with other phases.
In this case, if the tear-off expressions are positive, the contact to the other phase is canceled,
i.e. the index of opposite point (value in %ind_iopp%) is set to zero.

Also see the %ind_TearOff% variable.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BC_WettingAnal

BC_WettingAngle
define the contact angle between free surface

BC_WettingAngle ($BCindex$) = (WettingAngle_in_radians)

The contact angle is defined between the solid wall and the free surface as shown in the picture below:

‘*.‘ Yic

The angle is to be given in radians, i.e. a value of w (180 degrees) leads to absolutely hydrophobic (water-repellent)
behavior.
A value of 0 leads to absolutely hydrophilic behavior of the liquid material towards the wall.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BC_eps

BC_eps

turbulence-epsilon boundary conditions

If you choose to simulate with the k-epsilon TurbulenceModel (specified in KindOfProblem), you must also provide
boundary conditions for epsilon. Possible choices are:

111

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Pictures/TearOffCriterion.pdf

BC_eps ($BCindex$) = (%BND_free%)
BC_eps ($BCindex$) = (%BND_wall%)
BC_eps ($BCindex$) = (%BND_wall_nosl%)
BC_eps ($BCindex$) = (%BND_inflow%)
BC_eps ($BCindex$) = (%BND_DIRICH%)
BC_eps ($BCindex$) = (%BND_NEUMANN%)
BC_eps ($BCindex$) = (%BND_NUSSEL%)

List of members:

%BND_free% free surface boundary condition for turbulence-eps
%BND_wall% wall boundary condition for turbulence-eps
%BND_wall_nosl|% no-slip wall boundary condition for turbulence-eps
%BND _inflow% inflow boundary condition for turbulence-eps
%BND_DIRICH% Dirichlet boundary condition for turbulence-eps
%BND_NEUMANN% Neumann boundary condition for turbulence-eps
%BND_NUSSEL% Nusselt boundary condition for turbulence-eps

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC _eps - %BND_DIRICH%

%BND_DIRICH%

Dirichlet boundary condition for turbulence-eps

BC_eps ($BCindex$) = (%BND_DIRICH% , eps_Dirich)

Dirichlet (first-type) boundary condition which automatically sets the boundary value to eps_Dirich .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC eps - %BND_ NEUMANN%

%BND_NEUMANN%

Neumann boundary condition for turbulence-eps

BC_eps ($BCindex$) = (%BND_NEUMANN% , eps_Neumann)

Neumann (second-type) boundary condition which automatically sets the normal derivative to eps_Neumann .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC eps - %BND_ NUSSEL%

%BND_NUSSEL%

Nusselt boundary condition for turbulence-eps

Applies the Nusselt boundary condition for turbulence-eps at the boundary.

112

deps
on |p

= + feps,

where « is the flux and 3 is the flux of higher order.

BC_eps (BC_index) = (%BND_NUSSEL%, ,)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BQ_QQS - %BND_free%

%BND _free%
free surface boundary condition for turbulence-eps

Default turbulence-eps boundary condition for free surfaces, i.e. the normal derivative of eps is equal to zero.
BC_eps ($BCindex$) = (%BND_free%)

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC eps - %BND inflow%

%BND inflow%
inflow boundary condition for turbulence-eps

BC_eps ($BCindex$) = (%BND_inflow%)

Dirichlet (first-type) boundary condition which automatically sets the boundary value of eps to
RN\ 000
(0.0001 : —) C—
At (0.13)

Hereby, (.0001 - %2 corresponds to the inflow value of turbulence-k (see %BND_inflow%).

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC eps - %BND_wall%

%BND_wall%
wall boundary condition for turbulence-eps

Default turbulence-eps boundary condition for walls, i.e. the normal derivative of eps is equal to zero.
BC_eps ($BCindex$) = (%BND_wall%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

113

BC eps - %BND_wall nosl%

%BND_wall_nos|%
no-slip wall boundary condition for turbulence-eps

BC_eps ($BCindex$) = (%BND_wall_nosl%)

Neumann (second-type) boundary condition which automatically sets the normal derivative to zero.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC_k

BC_k

turbulence-k boundary conditions

If you choose to simulate with the k-epsilon TurbulenceModel (specified in KindOfProblem), you must also provide
boundary conditions for k. Possible choices are:

BC_k ($BCindex$) = (%BND_free%)

BC_k ($BCindex$) = (%BND_wall%)

BC_k ($BCindex$) = (%BND_wall_nosl%)
BC_k ($BCindex$) = (%BND_inflow%)
BC_k ($BCindex$) = (%BND_DIRICH%)
BC_k ($BCindex$) = (%BND_NEUMANN%)
BC_k ($BCindex$) = (%BND_NUSSEL%)

List of members:

%BND_free% free surface boundary condition for turbulence-k
%BND_wall% wall boundary condition for turbulence-k
%BND_wall_nosl% no-slip wall boundary condition for turbulence-k
%BND _inflow% inflow boundary condition for turbulence-k
%BND_DIRICHY Dirichlet boundary condition for turbulence-k
%BND_NEUMANN% Neumann boundary condition for turbulence-k
%BND_NUSSEL% Nusselt boundary condition for turbulence-k
MESHFREE - InputFiles - USER _common_variables - Boundar nditions - LIQUID BC .

BC_k - %BND_DIRICHY%

%BND_DIRICH%
Dirichlet boundary condition for turbulence-k

BC_k ($BCindex$) = (%BND_DIRICH% , k_Dirich)

Dirichlet (first-type) boundary condition which automatically sets the boundary value to k_Dirich .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
114

BC_k - %BND_NEUMANN%

%BND_ NEUMANN%
Neumann boundary condition for turbulence-k

BC_k ($BCindex$) = (%BND_NEUMANN% , k_Neumann)

Neumann (second-type) boundary condition which automatically sets the normal derivative to k_Neumann .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC k - %BND_NUSSEL%

%BND_NUSSEL%

Nusselt boundary condition for turbulence-k

Applies the Nusselt boundary condition for turbulence-k at the boundary.

ok
e — k
- o+ Bk,

where o is the flux and 3 is the flux of higher order.

BC_k (BC_index) = (%BND_NUSSEL%, ,)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC k - %BND_free%

%BND _free%
free surface boundary condition for turbulence-k

Default turbulence-k boundary condition for free surfaces, i.e. the normal derivative of k is equal to zero.
BC_k ($BCindex$) = (%BND_free%)

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_k - %BND_inflow%

%BND_inflow%

inflow boundary condition for turbulence-k

BC_k ($BCindex$) = (%BND_inflow%)

Dirichlet (first-type) boundary condition which automatically sets the boundary value of k to

115

B\ 2
({].{)001 : E)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

BC_k - %BND_wall%

%BND_wall%

wall boundary condition for turbulence-k

BC_k ($BCindex$) = (%BND_wall% , OPTIONAL:WallLayerThickness)

The MESHFREE points are treated like interior points which are shifted to the interior of the flow domain by j, -
By default ¢ is equal to WallLayer , for details see DOCUMATH_NumericallntegrationOf Turbulence.pdf .

WallLayerThickness: «x is equal to this parameter independent of the choice of WallLayer .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .

BC k - %BND_wall_nosl%

%BND_wall_nos|%
no-slip wall boundary condition for turbulence-k

BC_k ($BCindex$) = (%BND_wall_nos|%)

Neumann (second-type) boundary condition which automatically sets the normal derivative to zero.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

BC_p
BC_p

pressure boundary conditions

116

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Gasdynamics/DOCUMATH_NumericalIntegrationOfTurbulence.pdf

List of members:

%BND_inflow% pressure boundary conditions: inflow condition

%BND_AVERAGE% pressure boundary conditions: average of neighbors (Neumann type)
%BND_wall% pressure boundary conditions: classical wall

%BND_wall_nosl|% pressure boundary conditions: classical wall

%BND_slip% pressure boundary conditions: classical wall

%BND_slip_InContact_Explicit% pressure boundary condition for the case that the contact phase is the heavy phase

%BND_wall_InContact_Explicit pressure outflow boundary condition
%

%BND_free% pressure free surface boundary condition

%BND_free_InContact_Explicit pressure contact boundary conditions for the case the contact phase is the light phase
%

%BND_slip_InContact% pressure contact boundary conditions for the case the contact phase is the heavy phase

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BC p - %BND AVERAGE%

%BND_AVERAGE%

pressure boundary conditions: average of neighbors (Neumann type)

The pressure boundary condition %BND_AVERAGE% applies the average pressure of the neighbor points to the point. It
is a lower order Neumann type condition that sometimes is more robust than %BND_NEUMANN%.
Example:

BC_p ($outflow$) = (%BND_AVERAGE%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID _BC
BC_p - %BND_free%

%BND _free%
pressure free surface boundary condition

Syntax:

BC_p ($...$) = (%BND_free% ,p0)

Equation:
p=p*+n’-S-n
*
P =Po+ Ps
if the surface tension is 0, then
P* =Po

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary

117

condition shall be applied.

MESHFREE - InputFiles - USER_common variables - BoundaryConditions - LIQUID BC .
BC p - %BND_free InContact Explicit%

%BND_free_InContact_Explicit%
pressure contact boundary conditions for the case the contact phase is the light phase

Syntax:

BC_p ($...$) = (%BND_free_InContact_Explicit%)

Equation:

p=p*+nT -8 n

J

P =Ps

if the surface tension is 0, then
P* =Po

the stress tensor and the surface tension pressure is evaluated at the partner point of the opposite phase. This

set up mimics that the phase under consideration sees its contact partner as an external pressure

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC p - %BND_inflow%

%BND_inflow%

pressure boundary conditions: inflow condition

BC p ($..$) = (%BND_inflow%)

Applies standard pressure wall boundary condition to the inflow.

=Vp-n=pg-n

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC p - %BND_slip%

%BND _slip%
pressure boundary conditions: classical wall

Syntax:

BC_p($..$)=(%BND_wall% , OPTIONAL: c_div , OPTIONAL: c_NUS)

Equation:

118

optional parameters:
« c_div -> currently not used

» ¢_NUS -> regularize the boundary condition in the sense % =p (gT : n) +cenus - p

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC p - %BND_slip_InContact%

%BND_slip_InContact%
pressure contact boundary conditions for the case the contact phase is the heavy phase

Syntax:

BC_p ($...$) = (%BND_slip_InContact%)

Equation:

Vp=pg-n

where n is the normal of the contact interphase plane. |.e. the point under consideration sees the phase it is in contact with
as a wall

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC p - %BND_slip_InContact_Explicit%

%BND_slip_InContact_Explicit%
pressure boundary condition for the case that the contact phase is the heavy phase

Syntax:

BC p ($...$) = (%BND_slip_InContact_Explicit%)

Equation:
MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .

BC_p - %BND_wall%

%BND_wall%
pressure boundary conditions: classical wall

Syntax:

BC p($..$) = (%BND_wall% , OPTIONAL: c¢_div , OPTIONAL: ¢_NUS)

119

Equation:

o _

% 9Tp-n=p(e")

optional parameters:
« c_div -> currently not used

- i Hon i dp T
« ¢_NUS -> regularize the boundary condition in the sense % =p (g

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC p - %BND_wall InContact Explicit%

%BND_wall_InContact_Explicit%

pressure outflow boundary condition

Syntax:

BC_p ($...$) = (%BND_wall_InContact_Explicit%)

Equation:

Syntax:

BC p($..$) = (%BND_outflow%)

Equation:

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

-11) +eNUS P

BC_p - %BND_wall_nosl%

%BND_wall_nos|%
pressure boundary conditions: classical wall

Syntax:

BC_p ($...$)=(%BND_wall% , OPTIONAL: c_div , OPTIONAL: c_NUS)

Equation:

o _

% 9Tp-n=p(e")

optional parameters:
« c_div -> currently not used
« ¢_NUS -> regularize the boundary condition in the sense % =p (gT

-11) +eNUS P

120

MESHFREE - InputFiles - USER_common_variables -

BoundaryConditions -

LIQUID_ BC__ -

BC_v
BC v

velocity boundary conditions

BC v ($BCindex$

%BND_inflow% ,v_n,v_a,v_b)

() =(
BC v ($BCindex$) = (%BND_wall% , Parameter)
() =(

BC v ($BCindex$ %BND_wall_nosl|%)

BC_v ($BCindex$) = (%BND_slip% , FrictionCoefficient, ControlThicknessMomentum, vPenetration, uBoundary,

vBoundary, wBoundary)

BC v ($BCindex$) = (%BCON_Vdot% , Vdot_n, Vdot_a, Vdot b, BubbleVdot, BubbleRadius, FileNumber)

Also the syntax

BCON ($BCindex$,%ind_v(1)%) = (...)
is possible.

references to CODI and CODI_min_max

Make sure to set the ControlThicknessMomentum to ZERO if using EULER , EULERIMPL or EULEREXPL!

List of members:
%BND_wall_InContact_Explicit%
%BND _inflow%

%BND_slip%

%BND_wall%
%BND_wall_nosl%

%BND _outflow%

%BND _free%

%BND _free_InContact%
%BND_free_InContact_Explicit%
%BND _free_NoVisc%

%BND _far_field%
%BCON_Mdot%
%BCON_Vdot%
%BND_DIRICH%
%BND_NEUMANN%%

%BND_NUSSEL%

velocity wall boundary condition

inflow velocity boundary condition (Dirichlet type)
velocity boundary conditions: slip with viscous friction
velocity boundary conditions: pure slip

velocity boundary conditions: pure no-slip

velocity outflow boundary condition

free surface boundary condition for velocities

non-viscous boundary condition for velocities
far-field velocity boundary condition

velocity boundary condition: mass flux
velocity boundary conditions: volume flux
Dirichlet velocity boundary condition
Neumann velocity boundary condition

Nusselt velocity boundary condition

LIQUID__BC__ -

MESHFREE - InputFiles -
BC v - %BCON_Mdot%

USER_common_variables -

BoundaryConditions -

121

%BCON_Mdot%

velocity boundary condition: mass flux

BC_v ($BCindex$) = (%BCON_Mdot% , Mdot_n, Area)

%BCON_Mdot% computes the velocity inflow condition based on the given mass flux in normal direction of the boundary
element Mdot_n .
The size of the inflow Area is also required.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC_ _ -
BC_v - %BCON_Vdot%

%BCON_Vdot%

velocity boundary conditions: volume flux

BC v ($BCindex$) = (%BCON_Vdot% , Vdot_n, Vdot_a, Vdot b, BubbleVdot, BubbleRadius, FileNumber)

%BCON_Vdot% computes the velocity inflow conditions based on the given volume fluxes in normal direction of the
boundary element Vdot_n and

in the tangential directions of the boundary element Vdot_a and Vdot_b . The parameters Vdot_n, Vdot_a, and Vdot_b
are obligatory.

If the parameters BubbleVdot and BubbleRadius are given, the bubbly inflow algorithm is activated with the fractional
bubble volume flux

BubbleVdot and the expected bubble radius RadiusBubble . The algorithm will create bubbles at random positions at the
boundary element with

random size with expectation value RadiusBubble. The positions and sizes of the bubbles are saved in the files
BUBBLYINFLOW_Centers00000.dat and BUBBLYINFLOW_Areas00000.dat in the result folder.

If in addition the parameter FileNumber is given, MESHFREE expects the files BUBBLYINFLOW_CentersFileNumber.dat
and

BUBBLYINFLOW_AreasFilenumber.dat to be present at the path where MESHFREE is executed and reads the sizes as
well as positions

of the bubbles from those files instead of creating them randomly. The files have to named according to the following
convention:

- FileNumber = 0 ---> BUBBLYINFLOW_Centers00000.dat, BUBBLYINFLOW_Areas00000.dat

- FileNumber = 10 ---> BUBBLYINFLOW_Centers00010.dat, BUBBLYINFLOW_Areas00010.dat

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_v - %BND_DIRICHY%

%BND_DIRICH%
Dirichlet velocity boundary condition

Dirichlet (first-type) boundary condition for velocities. Sets the
velocity at the boundary to a fixed value or user-defined equation:

V = Vuser
Syntax:

BC_v (xyz) = (%BND_DIRICH% , , ,)

122

Example 1: constant inflow
BC_v (c_inflow) = (%BND_DIRICH% , 10, 0, 0)

Constant inflow of 10=* in x-direction, i.e. parallel
to the x-axis. Use %BND _inflow% instead if you want an inflow
perpendicular to a wall.

Example 2: inflow with equation
BC_v ($sine_inflow$) = (%BND_DIRICH% , [1.0 + sin(Y%ind_t%)], 0, 0)

An alternating inflow in x-direction with speeds v € [0,2] -

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

BC_v - %BND_NEUMANN%Y%

%BND_NEUMANN%
Neumann velocity boundary condition

Applies a Neumann (second-type) boundary condition for velocities.

Ovy vy du

on =% an P =

Syntax:

BC_v (xyz) = (%BND_NEUMANN% , , ,)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

BC_v - %BND_NUSSEL%

%BND_NUSSEL%

Nusselt velocity boundary condition

Applies the Nusselt boundary condition for velocities at the boundary:

%:a+ﬁﬁ'

Syntax:

BC_v (xyz) = (%BND_NUSSEL%, a, b, c, d, e, f)

. . . " oh Jure
which applies the equations %‘% =a+buy 5t =c+dvy F==e+ fv. -

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -

BC v - %BND far field%

%BND_far_field%
far-field velocity boundary condition

Applies a Dirichlet (first-type) boundary condition with the current
velocity at the boundary. This means that the velocity at the boundary is
constant and does not change over time.

123

Syntax:

BC_v (xyz) = (%BND_far_field%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC v - %BND_free%

%BND_free%
free surface boundary condition for velocities

Syntax:

BC_v (xyz) = (%BND_free%)
BC_v (xyz) = (%BND_free%, , , , Thickness, RegularizationParameter),

where
* (Sn.»Sn,,Sn.) is the stress in normal direction with the normal pointing outwards, (optional, default 0,0,0)
« Thickness is the thickness of the control element, (optional, default is 0.0)
« RegularizationParameter is a numerical regularization parameter for the % -operator. (optional, default 0.0)

These parameters are optional! If not set, they are using the default value of 0.

Good to know:
- Make sure to set the Thickness to ZERO if using EULER , EULERIMPL or EULEREXPL/, i.e.

BC_v (xyz) = (%BND_free%, , , , 0.0 , RegularizationParameter),

« In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the
boundary condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC_v - %BND_free InContact%

%BND_free_InContact%

Syntax:

BC_v (xyz) = (%BND_free_InContact%)

Good to know:
- Additionally, the same optional parameters as for %BND_free% are available.
« In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the
boundary condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC v - %BND_free InContact Explicit%

%BND_free_InContact_Explicit%

Syntax:
124

BC_v (xyz) = (%BND_free_InContact_Explicit%)

Good to know:
« Additionally, the same optional parameters as for %BND_free% are available.
« In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the
boundary condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID _BC -
BC v - %BND free NoVisc%

%BND free NoVisc%

non-viscous boundary condition for velocities

Applies a Dirichlet (first-type) boundary condition which is independent of any viscous
shear stresses:

0y,

Vhoundary = V + &fg — At

Psm

with gravity g , Ty the gradient of the pressure in normal direction

Syntax:

BC_v (xyz) = (%BND_free_NoVisc%)

In order to detect free surfaces, the parameter compute_FS must be set to 'YES' for the chamber, where the boundary
condition shall be applied.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC_ _ -
BC v - %BND inflow%

%BND_inflow%

inflow velocity boundary condition (Dirichlet type)

Normal Velocity

%BND_inflow% defines a boundary condition of Dirichlet type in normal direction. The syntax for defining the velocity v{’fl
in normal direction at an inflow boundary is:

BC_v (xyz) = (%BND_inflow% , v)

Example 1: Inflow with velocity of 10% normal to boundary elements with BC -flag $inflow$.
BC_v ($inflow$) = (%BND_inflow% , 10)

Good to know:

« The boundary condition is relative to a movement of the boundary element, in particular: if the inflow boundary
element is moving, the resulting total velocity will be the sum of the velocity of the movement plus the normal
velocity at the inflow.

« The normal vector 47 points to the inside.

« This boundary condition for the velocity is of Dirichlet type as the velocity is explicitely prescribed. Hence the
boundary condition for the hydrostatic and dynamic pressure should be of Neumann type e.g.:

125

BC_p ($inflow$) = (%BND_wall%)
BCON ($inflow$,%ind_p_dyn%) = (%BND_AVERAGE% , 0) # a lower order Neumann type condition

Special Case: Tangential Components

The statement %BND _inflow% with one parameter defines the velocity in normal direction. Sometimes it is also necessary
to have tangential components in the inflow boundary conditions, e.g. for modeling realistic inflow behavior in filling
processes. This can be done by specifying two further parameters.

Let 77 be the normal on the boundary element. Then two tangential vectors (non-unique!) 7. ,?,' can be found such that
7. g. b are all perpendicular to each other. Then also velocities U;fl =l’§1 :1"51 for each of these directions can be
prescribed. Syntax:

BC_v (xyz) = (%BND_inflow% , o , v , ”?n)

jiis

Example 2: Add a random fluctuation of tangential velocities at the inflow. Total order of magnitude of these velocities is
around 7 percent of the inflow velocity:

begin_alias{ }

"v_in" ="10.0 " # normal inflow velocity
"InflowFluctuations" =" 0.07 " # magnitude of fluctuations relative to normal velocity
end_alias

BC_v ($inflow$) = (%BND_inflow% , &v_in&, ... # normal inflow velocity
[&v_in& * rand(- &InflowFluctuations&)], ... # velocity component in tangential direction a
[&v_in& * rand(- &InflowFluctuations&)]) # velocity component in tangential direction b

Good to know:
« For the special case of a filling with perturbation it is ok, that the g 5 are not uniquely defined, because we want to

model a random behavior there and for that it is only important that the tangential vectors are perpendicular.
« MESHFREE issues a warning if it is detected that tangential velocities are prescribed by the user, because in most
cases, this is not what the user intended to do.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC v - %BND_outflow%

%BND _outflow%
velocity outflow boundary condition

This boundary condition adapts based on the major flow direction near the
outflow boundary.

If the relative velocity of the MESHFREE point to the boundary is pointing outwards, we assume a Neumann (second-type)
boundary
condition, i.e. %BND_NEUMANN% with % =0.

If, however, the relative velocity is pointing inwards, the boundary condition
is identical to %BND_wall% .

Syntax:

BC_v (xyz) = (%BND_outflow%)

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC v - %BND slip%

%BND_slip%

126

velocity boundary conditions: slip with viscous friction

BC_v ($BCindex$) = (%BND_slip% , FrictionCoefficient, ControlThicknessMomentum, vPenetration, uBoundary,
vBoundary, wBoundary)

FrictionCoefficient
Viscous friction in the sense

S ('un"'l) ca=a- (0" —vg) - a.

Here, a is the FrictionCoefficient, o« = () would lead to pure slip, & — oc would lead to pure no-slip. If the turbulence
model is in action, the effective friction coefficient is given by creff = Qurh + @ , Where vy, = arpyrn (K, €) -

ControlThicknessMomentum
Incorporation of the momentum balance into the boundary condition, especially important for big Re-numbers. The
thickness of the momentum control cell is ControlThicknessMomentum*H (smoothing length).

For current scientific reasons: by putting a minus in front of ControlThicknessMomentum, a special tear-off criterion is
launched. In fact, an additional component is locally added to the gradient of pressure in tangential direction, if

« the point is marked as tear-off-point (see %ind_TearOff%).
« the point is in a local suction regime (pressure decreases from the free surface towards the interior).

This additional pressure component might provoke tear-off, as it forces the tear-off-point to move away from the free
surface.

Make sure to set the ControlThicknessMomentum to ZERO if using EULER , EULERIMPL or EULEREXPL!

vPenetration
Force the normal component of the flow to penetrate through the wall, i.e.

UPenetration — (Un+1 - 'U[]) * 1.

{u,v,w}Boundary

Usually, MESHFREE checks the appropriate wall and applies the movement of this wall as the basis wall velocity vq .
Optionally, the user is able to redefine the components of the velocity of the wall movement by {u,v,w}Boundary. Note

however, that turbulence effects on « due to this movement are neglected in this case.

An alternative approach for simulations with turbulence is to instead directly define the relative wall movement via an
EVENT . This works essentially in the same way as %MOVE_VirtualRotation% in %MOVE_TranslationRotation% .

Example:

EVENT (1) = ([binA("MovedWallAlias")], %EVENT_FunctionManipulation% , ...
Y%ind_v_p(1)% , [Y %ind_v_p(1)% + &relativeWallMovementX& |, ...
%ind_v_p(2)% , [Y %ind_v_p(2)% + &relativeWallMovementY& |, ...
%ind_v_p(3)% , [Y %ind_v_p(3)% + &relativeWallMovementZ&])

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC .
BC v - %BND_wall%

%BND_wall%
velocity boundary conditions: pure slip

BC_v ($BCindex$) = (%BND_wall%)

127

MESHFREE determines the velocity of the boundary element the point is attached to.
This velocity is a Dirichlet condition on the normal component of the velocity and a Neumann condition on the tangential
components.

As an option, we can set:

BC_v ($BCindex$) = (%BND_wall% , 1)

In this case, MESHFREE tries to interpolate the velocities from the neighborhood of the given point from the previous time
step.

In this case the advantage is that only Dirichlet conditions are set forth to the velocity (much better conditioning of the
linear system).

The disadvantage is that it is an explicit boundary condition within an implicit numerical framework.

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID_BC_ _ -
BC_v - %BND_wall_InContact_Explicit%

%BND_wall_InContact_Explicit%
velocity wall boundary condition

Same as %BND_wall% .

MESHFREE - InputFiles - USER_common_variables - BoundaryConditions - LIQUID BC -
BC v - %BND_wall nosl%

%BND_wall_nosl%

velocity boundary conditions: pure no-slip

BC_v ($BCindex$) = (%BND_wall_nos|%)

MESHFREE determines the velocity of the boundary element the point is attached to.
This velocity is prescribed as a Dirichlet boundary condition to the MESHFREE point.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements

3.1.6. BoundaryElements

definition of the boundary elements to be used during simulation

The boundary element section is embedded in the following structure:
begin_boundary_elements{ }
end_boundary_elements

Options:
1.) Read in geometry files by the include clause (include{ File}).
2.) Define points, planes, lines, triangles, and simple bodies like cylinders and cubes (PlainBoundaryElements).

Every boundary needs an alias which describes its behavior, e.g. connects it to boundary conditions and movement. This
is described in AliasForGeometryltems .

Sometimes, it is also necessary to make GeometryManipulations dependent on previously read or defined boundary
elements.

128

With the ConstructClause , there is the chance to construct scalars or vectors that can be used to manipulate geometries.
In that aspect, it is necessary to keep a certain sequence: read in a subset of files, establish a sequence of the
ConstructClause items, and

apply the results of the ConstructClause items in a subsequent read-of-file.

Example:

begin_boundary_elements{ }

include{ FileNameA} # contains (at least) geometry part inflow

end_boundary_elements

begin_construct{ }

"xMeanlInflow" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "inflow") # mid point of geometry part inflow
end_construct

begin_boundary_elements{ }

include{ FileNameB} offset{ &xMeanInflow& } # contains other geometry parts

end_boundary_elements

Note: begin_boundary_elements and begin_construct blocks are read sequentially.
All geometry parts used in a construct statement need to be defined beforehand.

List of members:

include{ definition of a geometry file to be read by MESHFREE

CuttingCurveCluster define clusters of boundary elements by cutting the geometry along given curves
manipulate{ manipulate (move, rotate, ...) the geometry belonging to an alias-group

delete{ delete all the geometry belonging to a given alias-group

CreateBEfromGeometry from the already existing geometry, create new boundary elements
ConstructClause mathematical construction of scalars and vectors

PlainBoundaryElements definition of a plain geometry directly in MESHFREE

MESHFREE - InputFiles - USER _common_variables - BoundaryElements - ConstructClause

ConstructClause
mathematical construction of scalars and vectors

Construct statements offer the possibility to automatically construct quantities (Examples: centre of gravity, bounding box)
for GeometryManipulations like offset{, scale{, rotate{ ... based on a geometry read in. The construct statements are
evaluated in the startup phase together with the reading of the geometry files.

A construct statement may look as follows:

begin_boundary_elements{ }
include{ FileName} offset{ CONSTRUCT (%CONSTRUCT _...%, , ,,) }
end_boundary_elements

Construct Environments

129

If the construct result is to be used at several occasions, it is worthwhile putting it into a construct environment:

begin_construct{ }
"xMeanlnflow" = CONSTRUCT (%CONSTRUCT _...%, , , ,)
end_construct

It can then be referenced by the name given on the left hand side in the same way as an ALIAS . See also Variables .

The begin_construct{ environment is only evaluated at regular startup, not if a restart is performed. Hence, for construct
results that are supposed to be computed during restart, use

begin_construct_atRestart{ }

end_construct_atRestart {}

These are not read during normal initialization. Thus, to update values, you need to use both.

Examples

Example 1:

begin_boundary_elements{ }
include{ FileNameA} # contains (at least) geometry part inflow

end_boundary_elements

begin_construct{ }

"xMeanlInflow" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "inflow") # mid point of geometry part inflow
end_construct

begin_boundary_elements{ }

include{ FileNameB} offset{ &xMeanInflow& } # contains other geometry parts
include{ FileNameC} offset{ &xMeanInflow(1)& , &xMeanInflow(2)& , &MeanlInflow(3)& } # contains other geometry
parts

end_boundary_elements

In addition, any RightHandSideExpression can be used to save the result of a calculation during the initialisation phase
into an alias, for example to create new boundary elements from scratch after reading in other geometry.

Example 2:

begin_construct{ }

"Nnode" = "real(%BND_count_NP%)"
end_construct
begin_boundary_elements{ }
BND_node [&Nnode& +1] [0] [0] [0]
BND_node [&Nnode& +2] [0] [0] [1]
BND_node [&Nnode& +3] [0] [1] [1]
BND_node [&Nnode& +4] [1] [0] [0]

BND_tria &inflow& [&Nnode& +1] [&Nnode& +2] [&Nnode& +3]

BND_tria &inflow& [&Nnode& +3] [&Nnode& +4] [&Nnode& +1]
end_boundary_elements

130

Note:
« begin_boundary elements{ and begin_construct{ blocks are read sequentially.
All geometry parts used in a construct statement need to be defined beforehand.
Values that are saved into an alias stay constant throughout the simulation,
irrespective of for example geometry movements.
« By default, CONSTRUCT -aliases are not recomputed on RESTART . If recomputation is desired,
the begin_construct_atRestart{ -functionality has to be used.

The possible CONSTRUCT -keywords can be found below.

List of members:

%CONSTRUCT_Area% area of given alias-entities
%CONSTRUCT_BoxMax% maximum of enclosing box around given alias-entities
%CONSTRUCT_BoxMidPoint% mid point of enclosing box around given alias-entities
%CONSTRUCT_BoxMin% minimum of enclosing box around given alias-entities
%CONSTRUCT_COG% center of gravity for given alias-entities

%CONSTRUCT_EstablishCurveVolumeVers establish a 2-row-curve that provides the height-volume-relation of a closed

usHeight% part of geometry
%CONSTRUCT_Normal% normal with respect to given alias-entities
%CONSTRUCT_NormalDividedByArea% area-averaged normal with respect to given alias-entities

%CONSTRUCT_PointBasedOnAbsoluteVolu Computes a point that defines a given volume inside a closed structure
me%

%CONSTRUCT_PointBasedOnRelativeVolu compute a point that defines a given volume inside a closed structure
me%

%CONSTRUCT_Tangent1% first tangent with respect to given normal vector and alias-entities
%CONSTRUCT_Tangent2% second tangent with respect to given normal vector and alias-entities
%CONSTRUCT_Volume% volume of a (necessarily) closed geometrical part

%CONSTRUCT_VolumeForGivenHeight% compute the volume of a closed body restricted by a certain height

%CONVERT_TO_INTEGER% convert a set of construct variables to integer
MESHFREE - InputFiles - USER_common_variables - BoundaryElements - nstr I

%CONSTRUCT_Area%
%CONSTRUCT_Area%

area of given alias-entities

CONSTRUCT (%CONSTRUCT_Area% , "alias1", "alias2", ...)

Determines the area of the geometry elements belonging to the given list of aliases.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_BoxMax%

131

%CONSTRUCT_BoxMax%

maximum of enclosing box around given alias-entities

CONSTRUCT (%CONSTRUCT_BoxMax% , "alias1", "alias2", ...)

Constructs an enclosing box around the geometry elements belonging to the given list of aliases.
The maximum of the enclosing box in x-, y-, and z-direction is computed.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_BoxMidPoint%
%CONSTRUCT_ BoxMidPoint%

mid point of enclosing box around given alias-entities

CONSTRUCT (%CONSTRUCT_BoxMidPoint% , RelativePosition, "alias1", "alias2", ...)
Constructs an enclosing box around the geometry elements belonging to the given list of aliases.
RelativePosition:

« 0 will return the lower left corner of this box

« 1 will return the upper right corner of this box
« 0.5 will return the box mid point

Any value is allowed for RelativePosition.
OPTIONAL PARAMETER:

CONSTRUCT (%CONSTRUCT_BoxMidPoint% , %CONSTRUCT _IncludelGESfaces% , RelativePosition, "alias1",
"alias2", ...)

If this oprional parameter is set, then MESHFREE will inlcude IGES faces in the measurement of the enclosing boxes.

MESHFREE - InputFiles - USER _common variables - BoundaryElements - ConstructClause -

%CONSTRUCT_BoxMin%

%CONSTRUCT_BoxMin%

minimum of enclosing box around given alias-entities

CONSTRUCT (%CONSTRUCT_BoxMin% , "alias1", "alias2", ...)

Constructs an enclosing box around the geometry elements belonging to the given list of aliases.
The minimum of the enclosing box in x-, y-, and z-direction is computed.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_COG%
%CONSTRUCT_COG%

center of gravity for given alias-entities

CONSTRUCT (%CONSTRUCT_COG% , "alias1", "alias2", ...)

Determines the center of gravity for the geometry elements belonging to the given list of aliases.

132

MESHFREE - InputFiles - USER _common variables - BoundaryElements - ConstructClause -

%CONSTRUCT_EstablishCurveVolumeVersusHeight%

%CONSTRUCT _EstablishCurveVolumeVersusHeight%
establish a 2-row-curve that provides the height-volume-relation of a closed part of geometry

begin_construct{ }

"Curve" = CONSTRUCT (%CONSTRUCT _EstablishCurveVolumeVersusHeight% , nRef_x, nRef_y, nRef_z, pRef_x,
pRef_y, pRef_z, nTicks, "alias1", "alias2", ...)

end_construct

begin_curve{ $CurveName$}

&Curve&

end_curve

The text item "Curve" is really a curve in the MESHFREE -sense, i.e. it will contain carriage-return and line-feed

characters,
such that it can be used in a curve definition.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_Normal%
%CONSTRUCT_Normal%

normal with respect to given alias-entities

CONSTRUCT (%CONSTRUCT_Normal% , "alias1", "alias2", ...)

Determines the normal with respect to the geometry elements belonging to the given list of aliases.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_NormalDividedByArea%

%CONSTRUCT_NormalDividedByArea%

area-averaged normal with respect to given alias-entities

CONSTRUCT (%CONSTRUCT_NormalDividedByArea% , "alias1", "alias2", ...)

Determines the area-averaged normal with respect to the geometry elements belonging to the given list of aliases.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_PointBasedOnAbsoluteVolume%

%CONSTRUCT_PointBasedOnAbsoluteVolume%
Computes a point that defines a given volume inside a closed structure

Given a closed geometry (such as a tank) by a list of ALIAS names, this functionally places a point on a given axis.
The point and the given axis describe a plane. The plane shall subdivide the closed structure such that the
required absolute volume is below the plane.

begin_construct{ }

"x_Reference" = CONSTRUCT (%CONSTRUCT_PointBasedOnAbsoluteVolume% , axis_x, axis_y, axis_z,
absoluteVolume, "alias1", "alias2", ...)

end_construct

133

(axis_x, axis_y, axis_z) describe the axis that defines the normal direction of the (cutting) plane
absoluteVolume is the absolute volume required by the cutting plane, hence the unit is m"3

Remarks:

» The subroutine cuts the given geometry by the described plane, and calculates the volume in the shape below the

plane
« We use the principal that total volume of a 3D shape is equal to the net flux at its surface
We cut the mesh with a plane, use the resulting closed geometry below the plane.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER _common variables - BoundaryElements - nstructClause -

%CONSTRUCT_PointBasedOnRelativeVolume%

%CONSTRUCT _PointBasedOnRelativeVolume%
compute a point that defines a given volume inside a closed structure

Given a closed geometry (such as a tank) by a list of ALIAS names, this functionally places a point on a given axis.
The point and the given axis describe a plane. The plane shall subdivide the closed structure such that the
required relative volume (based on the structures total volume) is below the plane.

begin_construct{ }

"x_Reference" = CONSTRUCT (%CONSTRUCT_PointBasedOnRelativeVolume% , axis_x, axis_y, axis_z,
relativeVolume, "alias1", "alias2", ...)

end_construct

(axis_x, axis_y, axis_z) describe the axis that defines the normal direction of the (cutting) plane
relativeVolume is the relative volume required by the cutting plane, hence to be kept between 0 and 1

Remarks:

« This function converts relative volume into absolute volume by multiplying relative volume value into total volume,

then behaves exactly like %CONSTRUCT_PointBasedOnAbsoluteVolume%

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_Tangent1%

%CONSTRUCT _Tangenti1%

first tangent with respect to given normal vector and alias-entities

CONSTRUCT (%CONSTRUCT _Tangent1% , nRef_x, nRef_y, nRef_z, "alias1", "alias2", ...)

Determines the first tangent t; with respect to the given normal ngrer = (nRef_x, nRef_y , nRef_z)
and the normal Naliasl.alias2,... of the geometry elements belonging to the given list of aliases in the following sense:

¢ NRef X Naliasl. alias?, ...
1

n "nRef X DNaliasl.alias?, ... ||2

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -

%CONSTRUCT_Tangent2%

%CONSTRUCT_Tangent2%

second tangent with respect to given normal vector and alias-entities

134

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.BoundaryElements.ConstructClause.%CONSTRUCT_PointBasedOnAbsoluteVolume%

CONSTRUCT (%CONSTRUCT_Tangent2% , nRef_x, nRef_y, nRef_z, "alias1", "alias2", ...)

Determines the second tangent t, with respect to the given normal ngrer = (NRef_x, nRef_y , nRef_z)
and the normal Nalias1,alias2,... of the geometry elements belonging to the given list of aliases in the following sense:

NRer X £
fg = —ef 21
[[nges x t12

where t is the first tagent given by

NRef X Oaliasl,alias2,...

ty =
' InRet X Naliast aliasz,... |2

See also %CONSTRUCT_Tangent1% .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -
%CONSTRUCT_Volume%

%CONSTRUCT_Volume%

volume of a (necessatrily) closed geometrical part

Given a closed geometry by a list of ALIAS names, this functionality computes the internal volume of the geometry.

begin_construct{ }
"volume" = CONSTRUCT (%CONSTRUCT_Volume% , "alias1", "alias2", ...)
end_construct

Remarks:
« See %CONSTRUCT _PointBasedOnAbsoluteVolume%

MESHFREE - InputFiles - USER _common variables - BoundaryElements - ConstructClause -
%CONSTRUCT_VolumeForGivenHeight%

%CONSTRUCT_VolumeForGivenHeight%
compute the volume of a closed body restricted by a certain height

For a closed geometry, defined by a list of ALIAS names, compute the volume that turns out due to a given filling height.

begin_construct{ }

"VolumeVariable" = CONSTRUCT (%CONSTRUCT_VolumeForGivenHeight% , nRef_x, nRef_y, nRef_z, pRef_x,
pRef_y, pRef_z, height, "alias1", "alias2", ...)

end_construct

(nRef_x, nRef_y, nRef_z,) is the reference direction
(pRef_x, pRef_y, pRef_z,) is the reference point
height is the filling level of the closed structure above the reference point, in the direction of the reference direction.

This functionality is the inverse operation of %CONSTRUCT_PointBasedOnRelativeVolume% and
%CONSTRUCT _PointBasedOnAbsoluteVolume% .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - ConstructClause -
%CONVERT_TO_INTEGER%

%CONVERT_TO_INTEGER%

convert a set of construct variables to integer
135

CONSTRUCT (%CONVERT_TO_INTEGER% , N, "constructVariable1", "constructVariable2", ...)

N : if N=0 -> normal integer conversion; if N>0, fill leading zeros such that total length of integer is N

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CreateBEfromGeometry

CreateBEfromGeometry
from the already existing geometry, create new boundary elements

With this statement the user is able to create new boundary elements from already existing geometry.
A create statement has to be embedded in the boundary element environment, i.e.
begin_boundary_elements{ }

EreateStatement comes here

;a“nd_boundary_elements

For details see the options below.

List of members:

BNDpoints_ExtractFromNodes{ create BND_points from existing geometry nodes

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

CreateBEfromGeometry - BNDpoints ExtractFromN

BNDpoints_ExtractFromNodes{
create BND_points from existing geometry nodes

begin_boundary_elements{ }

BNDpoints_ExtractFromNodes{ [Eqn], "AliasTheNewPointsAreSupposedToTake",
"FirstAliasOfGeometryTheNodesAreTakenFrom", "SecondAliasOfGeometryTheNodesAreTakenFrom", ... }

end_boundary_elements

MESHFREE goes through all existing boundary elements whose alias is one
FirstAliasOfGeometryTheNodesAreTakenFrom ,

SecondAliasOfGeometryTheNodesAreTakenFrom , ...

From their nodes, new elements of BND_pointare created which take the
AliasTheNewPointsAreSupposedToTake .

The aliases have to exist, i.e.

begin_alias{ }

"AliasTheNewPointsAreSupposedToTake" = " ... " # alias for new points
"FirstAliasOfGeometryTheNodesAreTakenFrom" =" ... " # first original alias
"SecondAliasOfGeometryTheNodesAreTakenFrom" =" ... " # second original alias
end_alias

of

alias

136

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - CuttingCurveCluster

CuttingCurveCluster
define clusters of boundary elements by cutting the geometry along given curves

To cut the boundary geometry by cutting curves given in the IGES file FileName
and to determine the CuttingCurveCluster IDs, use:

include_CCC_curves{ FileName}

The IDs can then be used, for example in Equations and INTEGRATION statements,
via the functions CID() and isCID() .

Example:
SAVE_ITEM = (%SAVE_scalar%, [CID(0)], "CCCID")

See below for further optional parameters that can be set.

List of members:
include_CCC_curves define the geometry file containing cutting curves for clustering

CCC_maxSegmentLengt maximum segment length for linearization of cutting curves (optional)
h

CCC_minNewEdgelLengt minimum absolute length for new triangle edges (optional)
h

CCC_relativeEdgelLength minimum relative length for new triangle edges (optional)

CCC_CuttingDistance distance up to which boundary element nodes are considered to lie on a cutting curve
(optional)

CCC_clusterAllTriangles flag whether or not to determine clusters without given starting points (optional)

CCC_seeds seeds starting points for CuttingCurveCluster (optional)

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_CuttingDistance

CCC_CuttingDistance
distance up to which boundary element nodes are considered to lie on a cutting curve (optional)

This parameter is used to determine initial CuttingCurveCluster , which are then increased up to the cutting curves.
In some cases, changing this value can improve the accuracy of the clustering algorithm.

Example:
CCC_CuttingDistance = 2.0

If it is not given or if the value is not greater than zero, a default value will be computed
from the characteristics of the geometry triangulization and cutting curve linearization.

If the clustering algorithm detects that several cluster starting points define the same cluster,
then it will automatically try to make them unique by increasing this parameter.

See also CCC_seeds .

137

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

CuttingCurveCluster - _cl rAllTriangl
CCC_clusterAllTriangles

flag whether or not to determine clusters without given starting points (optional)

If set to true, all boundary triangles will be assigned to clusters, irrespective of whether or not
that cluster can be reached from any of the CCC_seeds .

Examples:

CCC_clusterAllTriangles = 0
CCC_clusterAllTriangles = 1

If it is not given or if the value is invalid, the following defaults will be used:

« 0 if at least one cluster starting point is given,
« 1 if no cluster starting point is given.

See also CCC_seeds .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_maxSegmentlLength

CCC_maxSegmentLength
maximum segment length for linearization of cutting curves (optional)

Set this parameter to define the maximum segment length for the linearization of the cutting curves
used for CuttingCurveCluster .

Example:
CCC_maxSegmentLength = 0.01

This parameter is optional. If it is not given or if the value is not greater than zero,
a default will be computed from the characteristics of the geometry triangulization.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_minNewEdgel ength

CCC_minNewEdgelLength

minimum absolute length for new triangle edges (optional)

Set this parameter to define the minimum length for new triangle edges when cutting the geometry
along cutting curves to determine CuttingCurveCluster .

Example:
CCC_minNewEdgelLength = 0.001

This parameter is optional. If it is not given or if the value is not greater than zero,
a default will be computed from the characteristics of the geometry triangulization.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_relativeEdgel ength

CCC_relativeEdgeLength

minimum relative length for new triangle edges (optional)
138

Set this parameter to a minimum relative tolerance (between 0 and 0.5) for cutting triangle edges
when cutting the geometry along cutting curves to determine CuttingCurveCluster .

Example:
CCC_minNewEdgelLength = 0.1
An edge will not be cut if either of the new edges would be shorter than

CCC_minNewEdgeLength - (old edge length).
If the parameter is not given or if the value is not greater than zero, a default value will be set.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_seeds

CCC_seeds

seeds starting points for CuttingCurveCluster (optional)

Seeds are points near boundary elements or rays pointing into the geometry
that are used to assign certain IDs to specific CuttingCurveCluster ,
so that these clusters can be addressed in INTEGRATION statements.

The cluster IDs are defined in the order in which the different
types of CCC_seeds appear in USER_common_variables .

The different ways in which seeds can be defined are given below.

See also CCC_clusterAllTriangles .

List of members:

begin_CCC_seeds2D add 2D seeds for CuttingCurveCluster (optional)
begin_CCC_seeds3D add 3D seeds for CuttingCurveCluster (optional)
begin_CCC_seeds6D add 6D seeds for CuttingCurveCluster (optional)
include_CCC_seeds2D include 2D seeds for CuttingCurveCluster from file (optional)
include_CCC_seeds3D include 3D seeds for CuttingCurveCluster from file (optional)
include_CCC_seeds6D include 6D seeds for CuttingCurveCluster from file (optional)
MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

CuttingCurveCluster - CCC_seeds - begin_ CCC_seeds2D

begin_CCC_seeds2D
add 2D seeds for CuttingCurveCluster (optional)

Seeds are used to specify the IDs of certain CuttingCurveCluster .
A 2D seed defines a point on a 2D plane at one face of the box
enveloping the cutting curves.

begin_CCC_seeds2D {dim, end}
Xy

end_CCC_seeds2D{}

139

The parameter dim is an integer (1,2,3) which determines the dimension
held constant in the plane.

The parameter end is either 'min’ or 'max' and determines whether the minimal
or maximal value of the enclosing box for that dimension is supposed to be used.

The first triangle that is hit by the ray starting in the determined point
and directed perpendicular to the plane into the box is used to seed the cluster.

Example:
begin_CCC_seeds2D {3, min}
1.02.0

end_CCC_seeds2D{}
begin_CCC_seeds2D {1, max}

10.0 0.0
end_CCC_seeds2D{}

The cluster IDs are defined in the order in which the different
types of CCC_seeds appear in USER_common_variables .

See also CCC_seeds .

MESHFREE - InputFiles - USER _common variables - BoundaryElements -
CuttingCurveCluster - CCC_seeds - begin_ CCC_seeds3D

begin_CCC_seeds3D
add 3D seeds for CuttingCurveCluster (optional)

Seeds are used to specify the IDs of certain CuttingCurveCluster .
A 3D seed defines a point in the coordinate system of the cutting curves.

begin_CCC_seeds3D {}
Xyz

end_CCC_seeds3D{}
The nearest boundary triangle to the point (x,y, z) is used to build the cluster.

The cluster IDs are defined in the order in which the different
types of CCC_seeds appear in USER_common_variables .

See also CCC_seeds .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - CCC_seeds - begin CCC_seeds6D

begin_CCC_seeds6D
add 6D seeds for CuttingCurveCluster (optional)

Seeds are used to specify the IDs of certain CuttingCurveCluster .
A 6D seed defines a point and a direction from that point towards the geometry
in the coordinate system of the cutting curves.

begin_CCC_seeds6D {}
Xy zdxdydz

end_CCC_seeds6D{}

140

The first triangle that is hit by the ray starting in point (x ,y, z)
and going into direction (dx , dy , dz) is used to build the cluster.

The cluster IDs are defined in the order in which the different
types of CCC_seeds appear in USER_common_variables .

See also CCC_seeds .

MESHFREE - InputFiles - USER _common variables - BoundaryElements -

CuttingCurveCluster - CCC _seeds - include CCC_seeds2D

include_ CCC_seeds2D
include 2D seeds for CuttingCurveCluster from file (optional)

The command

include_CCC_seeds2D {dim, end, FileName}
is equivalent to

begin_CCC_seeds2D {dim, end}

[contents of file FileName]

end_CCC_seeds2D{}

See also CCC_seeds .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

CuttingCurveCluster - CCC_seeds - include CCC_seeds3D

include CCC_seeds3D

include 3D seeds for CuttingCurveCluster from file (optional)

The command
include_CCC_seeds3D {FileName}
is equivalent to
begin_CCC_seeds3D {}

[contents of file FileName]

end_CCC_seeds3D{}

See also CCC_seeds ..

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

CuttingCurveCluster - CCC _seeds - include CCC_seeds6D

include_CCC_seeds6D

include 6D seeds for CuttingCurveCluster from file (optional)

The command
include_CCC_seeds6D {FileName}

is equivalent to

141

begin_CCC_seeds6D {}
[contents of file FileName]
end_CCC_seeds6D{}

See also CCC_seeds .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
CuttingCurveCluster - include CCC_curves

include_CCC_curves
define the geometry file containing cutting curves for clustering

To add the geometry file containing cutting curves and determine the CuttingCurveCluster IDs, use:
include_CCC_curves{ FileName}
So far, only a single IGES file can be included. Non-curve elements in the file will be ignored.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements

PlainBoundaryElements
definition of a plain geometry directly in MESHFREE

Some boundary entities can be defined manually via
begin_boundary_elements{ }
BND_entity &AliasName& coordinates GeometryManipulations

end_boundary_elements

Alternatively, the alias definition as described in AliasForGeometryltems
can be written directly instead of referencing an AliasName.

For the possible choices of BND_entity see below.

List of members:

BND_cube create an independent rectangular cuboid (box)

BND_cylinder create a cylinder

BND_disk create a disk

BND_line create an independent line

BND_node create an independent node for use in other boundary entity definitions
BND_plane

BND_point create an independent point

BND_quad create an independent quadrilateral

BND_tria create an independent triangle

BND_triabN create an independent 6-node triangle

142

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_cube

BND_cube
create an independent rectangular cuboid (box)

A rectangular cuboid (box) with edges parallel to the axes is defined by the coordinates of two opposite corners

BND_cube &AliasName& x1 y1 z1 x2 y2 z2 GeometryManipulations

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_cylinder

BND_cylinder
create a cylinder

A cylinder can be defined by:
BND_cylinder &aliasDefinition& x0 y0 z0 nx ny nz height radiusA radiusB OPTIONAL:NumberOfSegmentsInCircle

The cylinder is given by the point (x0 , y0 , z0), the direction of the axis (nx, ny , nz), the height, and the two radius
at the bottom (radiusA) and the top (radiusB). Hence, even a truncated cone is possible.

NumberOfSegmentsInCircle defines the number of discretization ticks for the circle.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_disk

BND_disk

create a disk

A disk can be defined by:

BND_disk &aliasDefinition& x0 y0 z0 nx ny nz radius OPTIONAL:NumberOfSegmentsInCircle

The disk is given by the center point (X0, y0 , 20), the direction of the axis (nx , ny , nz), and the radius.
NumberOfSegmentsInCircle defines the number of discretization ticks for the circle. By default is 51.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_line

BND _line
create an independent line

An independent line can be defined by
« the (initial) coordinates (x1,y1,z1) and (x2, y2, z2) for the starting and ending point of the line, respectively:

BND_line &AliasName& x1 y1 z1 x2 y2 z2 GeometryManipulations
« the node indices ip1 and ip2 for the starting and ending point of the line, respectively, of already existing nodes:

BND_line &AliasName& ip1 ip2 GeometryManipulations

If the line is defined by coordinates, MESHFREE automatically creates new node points as a basis.

143

MESHFREE - InputFiles - USER _common variables - BoundaryElements -
PlainBoundaryElements - BND_node

BND_node
create an independent node for use in other boundary entity definitions

An independent node, which can be used in definitions of boundary entity definitions
is defined by an optional Nodelndex and its coordinates.

BND_node OPTIONAL:Nodelndex xi yi zi

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_plane

BND_plane

A plane can be defined by the coordinates of a point on the plane (x0, y0 , z0)
and the direction of its normal (nx, ny , nz):

BND_plane &aliasDefinition& x0 y0 z0 nx ny nz

Such planes can be used for the following tasks:
- Define flat initial free surfaces, see example SimpleBox .
« Cut off points once they pass the plane, see %BND_cut% .
« Use as feeder or cutter, see example SimpleBoxFeederCutter.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_point

BND_point
create an independent point

An independent point can be defined by
« its (initial) coordinate (x,y, z):

BND_point &AliasName& x y z GeometryManipulations
« the node index ip of an already existing node:

BND_point &AliasName& ip GeometryManipulations

If it is defined by its coordinates, MESHFREE automatically creates a new node point as a basis.

A BND_point can be used to trigger:
e SMOOTH_LENGTH definitions
o INTEGRATION -statements using values at this point, e.g. %POINT_APPROXIMATE%

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_quad

BND_quad

create an independent quadrilateral

144

An independent quadrilateral can be defined by

« the (initial) coordinates (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) and (x4,y4,z4) of its corners.
BND_quad &AliasName& x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 GeometryManipulations
« the node indices ip1, ip2, ip3 and ip4 for the corners of the quadrilateral:

BND_quad &AliasName& ip1 ip2 ip3 ip4 GeometryManipulations

If the quadrilateral is defined by coordinates, MESHFREE automatically creates new node points as a basis. Internally,
MESHFREE divides the quadrilateral into two triangles (1-2-3 and 3-4-1, see BND _tria).

Note: The algorithm COMP_SortBEintoBoxes_Version = 4 only works for planar quadrilaterals.

MESHFREE - InputFiles - USER _common variables - BoundaryElements -
PlainBoundaryElements - BND_tria

BND_tria

create an independent triangle

An independent triangle can be defined by

« the (initial) coordinates (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) of the three corners of the triangle.
The cross product (x2-x1,y2-y1,z2-z1)x(x3-x1,y3-y1,z3-z1) forms the inward pointing direction of the triangle:

BND_tria &AliasName& x1 y1 z1 x2 y2 z2 x3 y3 z3 GeometryManipulations
- the node indices ip1, ip2, and ip3 for the three corners of the triangle:

BND_tria &AliasName& ip1 ip2 ip3 GeometryManipulations

If the triangle is defined by coordinates, MESHFREE automatically creates new node points as a basis.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -
PlainBoundaryElements - BND_triabN

BND_tria6N

create an independent 6-node triangle

A 6-node triangle is defined by the coordinates of its corners and the midpoints of its curved edges.
The curved edges are the quadratic parametric (z;;(s), ¥i;(s), zi;(s))T such that
245 (0) = xi, 7;5(0.5) = xij, x5 (1) =xj, etc.
In MESHFREE , the two possible definitions of an independent 6-node triangle are via
« the (initial) coordinates (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) of the three corners of the triangle
and the (initial) coordinates (x12,y12,212), (x23,y23,223), (x31,y31,z31) for the three edge midpoints of the triangle.
The cross product (x2-x1,y2-y1,z2-z1)x(x3-x1,y3-y1,z3-z1) forms the inward pointing direction of the triangle:

BND_tria6N &AliasName& x1 y1 z1 x2 y2 z2 x3 y3 z3 x12 y12 z12 x23 y23 z23 x31 y31 z31 GeometryManipulations

« the node indices ip1, ip2, and ip3 for the three corners of the triangle
and the node indices ip12, ip23, and ip31 for the three edge midpoints of the triangle:

145

BND_triabN &AliasName& ip1 ip2 ip3 ip12 ip23 ip31 GeometryManipulations

MESHFREE - InputFiles - USER _common variables - BoundaryElements - delete{

deletef
delete all the geometry belonging to a given alias-group

begin_boundary_elements{ }
delete{ "Alias1","Alias2","Alias3",...}
end_boundary_elements

All geometry elements which belong to the given alias "Alias1", "Alias2", and "Alias3" are deleted. MESHFREE tries to
shrink the boundary element arrays if possible.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{

include{
definition of a geometry file to be read by MESHFREE

Reading a geometry file is done in the following way:

begin_boundary_elements{ }
include{ FileName}

end_boundary_elements

No need to put the file name in double quotes!

A geometry file usually provides a set of node points as well as a set of topological connections of the node points
in order to create triangles, quads, but also points and lines.

Supported formats:
- PAMCRASH
« STL (ascii only!)
- MSH
- OBJ
- FDNEUT
- NASTRAN

Sometimes, it is necessary to geometrically modify geometry entities. That can be done by

begin_boundary_elements{ }

i.r'w.clude{ FileName} GeometryManipulations GeometryRestrictions exportGeometry{ }

;nd_boundary_elements

The categories GeometryManipulations , GeometryRestrictions , exportGeometry{} (or exportFile{ }) are optional. None, a
choice of them, or even all

of them in the same statement/line are accepted.

146

List of members:

GeometryManipulations geometrical modifications of boundary elements files read
GeometryRestrictions restrictions for boundary elements files read

exportGeometry{ export the actually imported geometry file in STL or OBJ format
exportFile{ export the actually imported geometry file in STL or OBJ format
MSH .msh file format for geometries

OBJ .obj file format for geometries

STL .stl file format for geometries

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations

GeometryManipulations
geometrical modifications of boundary elements files read

Sometimes, it is necessary to geometrically modify geometry entities. That can be done by

begin_boundary_elements{ }
include{ FileName} GeometryManipulations

end_boundary_elements

GeometryManipulations can be a list. It will be executed in the order as they appear.
Actions like scale, offset etc. can even be repeatedly be applied.

Example:

begin_boundary_elements{ }
include{ FileName} scale{...} offset{...} scale{...} rotate{...} offset{...}

end_boundary_elements

The geometry manipulations are applied to the node points. The topology connections describing the elements are not
touched.

147

List of members:
applyAlias{
coarsenGeometry{
duplicate{

extrude{

layerByCluster{

mirror{

offset{
removeBEonCondition{
removeCluster{

removelsolatedClusters{

removeOuterShell{
removeTinyClusters{
reorientation{

revOrient{

rotate{

scale{
symmetryfaceByCluster{
thickenabs{

thickenexp({

turn_6NodeTriangles_into_3Node

Triangles{

MESHFREE - InputFiles -
GeometryManipulations -

Rename BoundaryElements with the given alias name
coarsen the triangulation of the specified part of the geometry
Duplicate part of the geometry and apply a new alias

Extrude a 2D surface in one direction to a 3D object

assign the layer-property of a geometrical entity, possibly overrides the user given
value from the ALIAS block

generalized mirroring across a plane

shift the given geometry by a vector

remove boundary elements based on a (mathematical) condition
removes cluster(s) of the current geometry subset due to given conditions

remove clusters who have less than a given number of single geometry elements
(triangles, quads, etc.)

for shell geometry given by two closed surfaces, remove outer surface
remove tiny parts from a geometrical entity

reorientation (inside/outside) of parts of the geometry

Invert orientation of boundary elements

rotate the given geometry about a point with a rotation axis and angle
scale the given geometry about the origin

automatic distribution of SYMMETRYFACE-flags to geometry components
move a given part of the geometry by an absolute value of distance

move the given part of the boundary by a relative value, correlated to the locally given
smoothing length

Turn 6-node triangles into 3-node triangles

applyAlias{

USER_common_variables - BoundaryElements - include{ -
applyAlias{

Rename BoundaryElements with the given alias name

Rename BoundaryElements with the given AliasForGeometryltems , for example to give the same alias to all geometry
parts in a geometry file, irrespective of what names were defined in the file.

Example:

148

begin_boundary_elements{ }
include{ cube.msh} applyAlias{ "cube"} # whole geometry gets renamed to cube
end_boundary_elements

Note: Internally, this command overwrites aliases after the geometry file has been read completely. This implies that, even
when applyAlias{ is used, all parts in the geometry file need to have a valid alias (default alias is sufficient) in order to
successfully complete the reading process.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - coarsenGeometry{

coarsenGeometry{
coarsen the triangulation of the specified part of the geometry

begin_boundary_elements{ }

include{ FileName}, ..., coarsenGeometry{ lengthThreshold'}
manipulate{ "someAlias"}, ..., coarsenGeometry{ lengthThreshold }
end_boundary_elements

lengthThreshold : MESHFREE will cluster all those geometry node points, whose distance is less than the given threshold.

Prior to the clustering, all node points obtain an importance-weight. Points on a geometry edge have a higher weight than
regular node points.

The new location of the clustered points NPy, N Ps is the mean value X stered = % (xwp, +Xnp,) . if the weights
are equal.
Otherwise, Xclustered = XNP,, Where NP, is the index with the bigger weight.

This feature is currently experimental !

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - duplicate{

duplicate{
Duplicate part of the geometry and apply a new alias

Duplicate part of the geometry and apply a new alias. By default, the orientation of the duplicated geometry is inverted for
use with a second chamber. If the original orientation is required, this can be achieved with an extra call to revOrient{ }.

Note: The aliases of the duplicated geometry have to be defined as usual (see AliasForGeometryltems). This means,
flags such as BC , ACTIVE , IDENT , etc. are not inherited from the original geometry.

Examples:
« With inverted orientation for use with a second chamber (duplicate geometry with alias
"sphere" and apply alias "bubble"):

begin_boundary_elements{ }

include{ sphere.msh} # contains alias "sphere"
manipulate{ "sphere"} duplicate{ "bubble"}
end_boundary_elements

« With original orientation for a translated copy of the geometry with different alias
(step 1 - duplicate geometry with alias "cube" and apply alias "cube_offset",
step 2 - restore original orientation and translate alias "cube_offset"):

149

begin_boundary_elements{ }

include{ cube.msh} # contains alias "cube"
manipulate{ "cube"} duplicate{ "cube_offset"}
manipulate{ "cube_offset"} revOrient{ } offset{ 0,0,1}
end_boundary_elements

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - extrude{

extrude{
Extrude a 2D surface in one direction to a 3D object

Extrude a 2D surface in one direction to a 3D object. This is useful, if you have a 2D sketch and want to create a 3D
geometry from it.

manipulate{ "Alias"} extrude{ OPTIONAL: %GEQO_open% , DirectionX, DirectionY, DirectionZ, OPTIONAL.:
DirectionLength }

The vector (DirectionX , DirectionY , DirectionZ) gives the direction in which to extrude. It can optionally be normalized,

so that the user can specify the length of extrusion with DirectionLength .

For example, to construct an open container, the user also has the option to leave the extruded object open at the other
end.

For this the keyword %GEO_open% must be set. The default is %GEO_close%.

Note: Always check the normals for an extrude command! It may be that the normals still have to be reoriented
with revOrient{ } as needed.
Example:

begin_boundary_elements{ }

manipulate{ "Alias1"} extrude{ 0, 0, 0.5 } # extrude Alias1 in z direction with length 0.5

manipulate{ "Alias2"} extrude{ 0, 0, 0.5, 2.0 } # extrude Alias2 in z direction with length 2.0

manipulate{ "Alias3"} extrude{ %GEO_open%, 0, 0, 0.5, 2.0 } # extrude Alias3 in z direction with length 2.0 and leave the
extrusion open

end_boundary_elements

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - layerByCluster{

layerByCluster{
assign the layer-property of a geometrical entity, possibly overrides the user given value from the ALIAS block

After detecting all clusters of the geometry, see (CLUSTER) , MESHFREE assigns the cluster index to the LAYER
information.
By this, possibly given LAYER indices by the user within the ALIAS defintions are overwritten.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - mirror{

mirror{

generalized mirroring across a plane

150

include{ File} ... mirror{ X,Y,Z, NormalX, NormalY, NormalZ, OPTIONAL:NormalLength } ...

Given a point (X, Y, Z) and a unit normal (NormalX , NormalY , NormalZ)
or a normal (NormalX , NormalY , NormalZ) that is scaled to NormalLength ,
this operation mirrors the geometry across the plane through (X,Y,2)
perpendicular to its normal (NormalX, NormalY, NormalZ).

Examples:

include{ File} ... mirror{ 0,0,0, 1,0,0} ...
include{ File} ... mirror{ 1.5,2.0,0.5,1,1,1,1.0} ...

The generalized behavior for non-unit length 1, of the normal

would move each node P of the geometry to P + LQ(Pmimred - P).

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - offset{

offset{
shift the given geometry by a vector

include{ File} ... offset{ shift_x, shift_y, shift_z, OPTIONAL:ShiftDistance } ...
The geometry is shifted by the given vector (shift_x, shift_y, shift_z).

If the optional parameter ShiftDistance is given AND non-zero, then the vector (shift_x, shift_y, shift_z) only
represents the shifting direction, into which the object is shifted by the given distance ShiftDistance.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - removeBEonCondition{

removeBEonCondition{
remove boundary elements based on a (mathematical) condition

For the given geometrical entity (file or AliasName), boundary elements are deletrd, if they fulfill a given condition.
The conditions can be based on the geometry of the node points or the center of gravity
Additional conditions might be possible based on the layer, the size of the boundary element etc. (see the list below)

begin_boundary_elements{ }
include{ FileName} removeBEonCondition{ %GEO_removeBasedOnNodes% | %GEO_removeBasedOnCOG% , [
equationText] } # remove boundary elements if evaluation of the given equation returns a positive number

manipulate{ "AliasName"} removeBEonCondition{ %GEO_removeBasedOnNodes% | %GEO_removeBasedOnNodes%
, [equationText] } # remove boundary elements if evaluation of the given equation returns a positive number

end_boundary_elements

examples :
manipulate{ "AliasName"} removeBEonCondition{ %GEO_removeBasedOnNodes% , [Y %ind_x(3)% > 0.8]}

-> delete element, if the z-components of all of the node points are bigger than 0.8

manipulate{ "AliasName"} removeBEonCondition{ %GEO_removeBasedOnCOG% , [Y %ind_x(3)% > 0.8 1}

151

-> delete element, if the z-component of the center of gravity (COQG) is bigger than 0.8

Additional conditions are possible using the items
« nromal information ->Y %ind_n(1)% , Y %ind_n(2)% , Y %ind_n(3)%
e area->Y %ind_dA%

layer information -> Y %ind_layer%

boundary condition information -> Y %ind_BC%

« movement information -> Y %ind MOVE%

index of boundary element -> Y %ind_BE1%

IMPORTANT: The user connot use predefined equations here, so the construct

begin_equation{ "z_limit"}

Y %ind_x(3)% > 0.8

end_equation

begin_boundary_elements{ }

manipulate{ "AliasName"} removeBEonCondition{ %GEO_removeBasedOnCOG% , [equn(z_limit)] }
end_boundary_elements

will not work, as equation definitions are not yet read at the time of BE-read-in.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - removeCluster{

removeCluster{
removes cluster(s) of the current geometry subset due to given conditions

manipulate{ "Alias1", ..., "AliasN"} removeCluster{ %GEO_RemoveClusterByIlndex% , ilndex }

manipulate{ "Alias1", ..., "AliasN"} removeCluster{ %GEO_RemoveClusterClosestToGivenPoint% , X, y, z }
List of members:
%GEO_RemoveClusterBylndex% %GEO_RemoveClusterBylndex%

%GEQO_RemoveClusterClosestToGivenPoint% %GEQO_RemoveClusterClosestToGivenPoint%

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - removeCluster{ - %GEO_RemoveClusterBylndex%
%GEO_RemoveClusterBylndex%

manipulate{ "Alias1", ..., "AliasN"} removeCluster{ %GEO_RemoveClusterByIndex% , ilndex}

remove the cluster with the index ilndex. This function is difficult to use, as MESHFREE distributes the cluster indices
automatically in the order as it finds them.
So, the way to use is to

« first let the simulation run with the SimCut functionality

« by postprocessing, check the cluster index MESHFREE has given to the particular partitions of the geometry

« add the statement in the frame above to the end of the inpuit file, i.e. add the lines

begin_boundary_elements{ }
mamipulate{"Alias1", ..., "AliasN"} removeCluster{ %GEO_RemoveClusterByIndex% , ilndex}
end_boundary_elements

where ilndex is now the dedicated cluster index found.
bulltelist#
This now removes ONE cluster. If more clusters are to be removed, repeat the procedure.

152

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - removeCluster{ - %GEQO_RemoveClusterClosestToGivenPoint%

%GEO_RemoveClusterClosestToGivenPoint%

manipulate{ "Alias1", ..., "AliasN"} removeCluster{ %GEO_RemoveClusterClosestToGivenPoint% , X, y, z}

remove the cluster which is closest to the point with the coordinates (x,y,z).
OPTION IS NOT ACTIVE YETI

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - removelsolatedClusters{

removelsolatedClusters{
remove clusters who have less than a given number of single geometry elements (triangles, quads, etc.)

« For the given geometrical entity (file or AliasName), the geometry is scanned for all clusters, i.e. topologically

connected parts of the geometry.
« Count the number of single elements (BND_tria , BND_quad , etc.) inside of each identified cluster.
« A cluster is deleted if the number of single entities is less than the given number.

begin_boundary_elements{ }

include{ FileName} removelsolatedClusters{ N_min } # remove tiny clusters based on all the geometry read from the

given file

manipulate{ "AliasName"} removelsolatedClusters{ N_min } # remove tiny clusters based on the geometry described by

the given AliasName

end_boundary_elements

N_min : minimum number of single elements required for a valid cluster.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - removeQuterShell{

removeOuterShell{
for shell geometry given by two closed surfaces, remove outer surface

For the simulation of the fluid dynamics inside a closed container, only the inner boundary of the container, facing the fluid
domain, is required in MESHFREE . If the geometry file to be used contains the complete description of the container as
two closed surfaces (shells),then the outer, unneccessary, one should be removed to save time in the point cloud

organisation part of the simulation. MESHFREE can do this automatically with removeOuterShell{ factor }.

The parameter factor, chosen between 0 and 1, is used to check whether the volumes enclosed by the two surfaces are

close enough to each other for a shell description of the geometry, that is, the outer shell is only removed if

Vinside = factor - Voyside

Example:

153

begin_boundary_elements{ }
include{ FileName} removeOuterShell{ factor }

manipulate{ "AliasName"} removeOuterShell{ factor }

end_boundary_elements

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - removeTinyClusters{

removeTinyClusters{
remove tiny parts from a geometrical entity

« For the given geometrical entity (file or AliasName), the geometry is scanned for all clusters, i.e. topologically
connected parts of the geometry.

« The area of the clusters is measured.

« The cluster with the biggest area is identified.

« The clusters whose area is, by a given factor, smaller than the biggest one, are removed. l.e. remove cluster i if

A <a- Ab-igges.'. .

begin_boundary_elements{ }
include{ FileName} removeTinyClusters{ factor } # remove tiny clusters based on all the geometry read from the given
file

manipulate{ "AliasName"} removeTinyClusters{ factor } # remove tiny clusters based on the geometry described by the
given AliasName

end_boundary_elements

factor : the factor needed for the tiny-decision, i.e. the a above. This factor should be (much) smaller than 1.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - reorientation{

reorientation{
reorientation (inside/outside) of parts of the geometry

Manipulate the orientation of the boundary elements of geometry parts, given by file or ALiasName.
« upon read in of a dedicated geometry files
« after reading the geometry based on the ALIAS name given

begin_boundary_elements{ }

include{ FileName} reorientation{ %GEO_Tube% , ...) # orientation manipulation directly upon reading of file, the
orientation

include{ FileName} reorientation{ %GEQO_Vector% , ...) # manipulation is effective for all entities read from file

manipulate{ "AliasName"} reorientation{ %GEO_Tube% , ...) # orientation manipulation for a given alias, the orientation
is adjusted for

manipulate{ "AliasName"} reorientation{ %GEO_Vector% , ...) # all boundray elements which are so far read in and
carry the name "AliasName"

end_boundary_elements

154

List of members:
%GEO_Vector% geometry reorientation based on a given vector

%GEO_Tube% reorient a part of the geometry in the tube sense

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - reorientation{ - %GEQO_Tube%

%GEO_Tube%
reorient a part of the geometry in the tube sense

Reorientation of tube-like or topologically closed parts of the boundary.

begin_boundary_elements{ }
include{ FileName}, ..., reorientation{ %GEO_Tube% , %GEO_Inside% , OPTIONAL:RatioForInternalParts }

include{ FileName}, ..., reorientation{ %GEO_Tube% , %GEO_Outside% , OPTIONAL:RatioForInternalParts }
end_boundary_elements

The geometry part should topologically be connected, i.e. triangles share the same nodes in order to provide geometrical
connectivity.

The inside/outside orientation definition is given by the following infinitessimal movement approach:

1.) Define the normal direction of the i-th triangle formed by the points P, P,,,, P,, by

ni:(Pm_H) X(Pn_Pm):
where the area of the triangle is
1
Ai = 5llnill2.

2.) Define an infinitessimal displacement of the j-th node point by

all triangles
attached toP;

%:PJ_{’ Z €N,

ﬁi:(um_ﬁ!)x(ﬁn_ﬁm):
1
2

[[72]|2-

3.) The geometry is oriented to the inside, if

all triangles all triangles

Z A > Z Au.i.

i

4.) RatioForinternalParts: If the geometry is a closed chamber (such as a tank) that contains internal parts,

then these parts will be oriented in the opposite direction. This is only the case if these parts fulfill the following
criterion:

155

all triangles of
all triangles internal part

RatioForInternalParts - Z A; > Z A;
i

i

List of members:
%GEQ_Inside% reorient (parts of) geometry towards its inside

%GEQO_Outside% reorient (parts of) geometry towards its outside

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - reorientation{ - %GEO_Tube% - %GEO_Inside%

%GEO_Inside%

reorient (parts of) geometry towards its inside

Reorientation of tube-like or topologically closed parts of the boundary towards the INSIDE. The way how to reorient is
given in %GEO_Tube% .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - reorientation{ - %GEQO_Tube% - %GEO_Outside%

%GEO_Outside%

reorient (parts of) geometry towards its outside

Reorientation of tube-like or topologically closed parts of the boundary towards the OUTSIDE. The way how to reorient is
given in %GEO_Tube% .

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - reorientation{ - %GEQO_Vector%

%GEO_Vector%

geometry reorientation based on a given vector

Adjust the orientation of a geometrical entity based on a given vector. The boundary elemnts are adjusted such that the
scalar product of their boundary normal and the given vector is positive.

begin_boundary_elements{ }

include{ FileName} reorientation{ %GEQ_Vector% , Vx, Vy, Vz) # manipulation of the whole fiel contents by the vector
constraint

manipulate{ "AliasName"} reorientation{ %GEO_Vector% , Vx, Vy, Vz) # manipulate all boundary elements having the
"AliasName" by the vector contraint

end_boundary_elements

(Vx, Vy, Vz) are the components of the vector respectively. The vector does not necessarily have unit length.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - revOrient{

156

revOrient{
Invert orientation of boundary elements

Invert orientation of boundary elements for a given file or alias for example in these cases

« Invert orientation of all geometry parts inside a geometry file

o Multiple geometry files with data for the same alias but with different orientations (in which case REV_ORIENT is
insufficient)

« Duplication of geometry parts with same orientation at multiple locations using duplicate{ }.

Examples:

begin_boundary_elements{ }
include{ cube.msh} revOrient{ } # orientation of whole geometry in this file inverted
end_boundary_elements

begin_boundary_elements{ }

include{ cube.msh}

manipulate{ "top"} revOrient{ } # only orientation of alias "top" inverted
end_boundary_elements

If the orientation of parts of the geometry is inconsistent, use reorientation{ } instead.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - rotatef

rotate{
rotate the given geometry about a point with a rotation axis and angle

include{ File} ... rotate{ O_x, O_y, O_z, Phi_x, Phi_y, Phi_z, OPTIONAL:RotationAngle } ...

The geometry is rotated about the point (O_x, O_y, O_z) with the rotation vector (Phi_x , Phi_y , Phi_z).
The vector (Phi_x,Phi_y,Phi_z) provides the rotation axis. If RotationAngle is NOT given, then
the length of the vector (Phi_x,Phi_y,Phi_z) provides the angle of rotation in radians.

| f RotationAngle is given, then the length of (Phi_x,Phi_y,Phi_z) does not play any role. MESHFREE will (internally)
normalize
this vector and apply the rotation angle given in the optional variable RotationAngle.

Warning: If the length of the vector (Phi_x,Phi_y,Phi_z) is zero, no rotation can be effected.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - scalef

scalef
scale the given geometry about the origin

The geometry is scaled about the origin. Either a global factor is given, that scales the geometry identically in all main
directions,

or three factors are given, representing the stretching in the three main directions (x,y,z):

include{ File} ... scale{ Factor} ...

157

or
include{ File} ... scale{ Factor_x, Factor_y, Factor_z} ...
or one-dimensional strectching

include{ File} ... scale{ nx, ny, nz, Factor_n} ...

or scaling around a certain point of origin

include{ File} ... scale{ Ox, Oy, Oz, Factor_x, Factor_y, Factor_z} ...

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - symmetryfaceByCluster{

symmetryfaceByCluster{
automatic distribution of SYMMETRYFACE-flags to geometry components

begin_boundary_elements{ }
include{ FileName} ... symmetryfaceByCluster{ }
end_boundary_elements

The geometry part might contain separated components or clusters. MESHFREE will set the SYMMETRYFACE -flag
by the automatically given cluster indices. All cluster flags provided by the ALIAS -constraints are overwritten.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

GeometryManipulations - thickenabs{

thickenabs{
move a given part of the geometry by an absolute value of distance

Thicken the geometry by moving the node points of the defined geometry parts.

begin_boundary_elements{ }

include{ FileName} thickenabs{ thickeningDistance, OPTIONAL: N_ThickeningLoops }
manipulate{ "AliasName"} thickenabs{ thickeningDistance, OPTIONAL: N_ThickeningLoops }
end_boundary_elements

thickeningDistance = the distance the boundary elements have to be moved is absolutely given by
D; = thickeningDistance (no relative movement!!!!)
N_ThickeningLoops = the moving of the distance [J; is subdivided into N_ThickeninglLoops steps.

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - thickenexp{

thickenexp{
move the given part of the boundary by a relative value, correlated to the locally given smoothing length

Thicken the geometry by moving the node points of the defined geometry parts.

begin_boundary_elements{ }

include{ FileName} thickenexp{ thickeningDistance, OPTIONAL: N_ThickeningLoops }
manipulate{ "AliasName"} thickenexp{ thickeningDistance, OPTIONAL: N_ThickeningLoops }
end_boundary_elements

158

thickeningDistance = the distance the boundary elements have to be moved is given by
Dy = thickeningDistance - H; , i.e. the parameter thickeningDistance is relative with respect to the local smoothing
length.

N_ThickeningLoops = the moving of the distance [J; is subdivided into N_ThickeningLoops steps.

EXPERIMENTAL only.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryManipulations - turn_6NodeTriangles into_ 3NodeTriangles{

turn_6NodeTriangles_into_3NodeTriangles{
Turn 6-node triangles into 3-node triangles

Any 6-node triangle found among the considered parts of the geometryis turned into a 3-node triangle, that is the
information about curved edge midpoints is ignored.

Example:

begin_boundary_elements{ }
include{ sphere.msh} turn_6NodeTriangles_into_3NodeTriangles{ }
end_boundary_elements

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
GeometryRestrictions

GeometryRestrictions
restrictions for boundary elements files read

Sometimes, it is desirable to use certain restrictions during read-in of boundary elements files. That can be done by

begin_boundary_elements{ }
include{ FileName} GeometryRestrictions

end_boundary_elements

GeometryRestrictions can be a list. It will be executed in the order as they appear.

Example:

begin_boundary_elements{ }
include{ FileName} only{...} sloppy{ }

end_boundary_elements

159

List of members:

append{ append the given string to all aliases in the geometry file

ignoref{ ignore listed aliases from a geometry file

only{ read only elements of a given alias from file

sloppy{ do not stop program if geometry file contains an undefined alias
MESHFREE - InputFiles - USER _common variables - BoundaryElements -

GeometryRestrictions - append{

append{

append the given string to all aliases in the geometry file

begin_boundary_elements{ }
include{ FileName} append{ "aliasextension"}
end_boundary_elements

The aliases in FileName will be appended by the given string.

MESHFREE - InputFiles - USER_common_variables -

BoundaryElements -

include{ -

includef{ -

GeometryRestrictions - ignoref

ignore{
ignore listed aliases from a geometry file

begin_boundary_elements{ }
include{ FileName} ignore{ "alias1", "alias2", ...}

end_boundary_elements

Do not read a boundary element from FileName, if it belongs to one of the given alias names.

MESHFREE - InputFiles - USER_common_variables -

BoundaryElements -

GeometryRestrictions - only{

only{

read only elements of a given alias from file

begin_boundary_elements{ }
include{ FileName} only{ "alias1", "alias2", ...}

end_boundary_elements

Read only the boundary elements from FileName, if they belong to one of the given alias names.

MESHFREE - InputFiles - USER_common_variables -

BoundaryElements -

includef{ -

include{ -

160

GeometryRestrictions - sloppy{
sloppy{

do not stop program if geometry file contains an undefined alias

begin_boundary_elements{ }
include{ FileName} ... sloppy{ } ...
end_boundary_elements

sloppy{ } avoids that the program stops execution if some of the alias given in the file does not exist.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ - MSH

MSH

.msh file format for geometries

Meshes generated in Gmsh - a free tool for mesh generation - are saved in the .msh file format.

MESHFREE supports triangular surface meshes of version 2.2 and 4.1 only .

Define physical entities for the boundary elements in Gmsh and refer to their names in AliasForGeometryltems to define
the properties of the boundary elements.

Good to know:
« As .msh can be also potentially dangerous email attachment under Windows, many spam filters filter these files out,
even if they are in a zip-file. You can however prevent this by renaming the ending. MESHFREE will still be able to
interpret the geometry information.

List of members:

PrepareGeometryBy GM prepare MESHFREE geometries by GMESH, an open source software for geometrical
SH preprocessing

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ - MSH -
PrepareGeometryBy GMSH

PrepareGeometryBy GMSH

prepare MESHFREE geometries by GMESH, an open source software for geometrical preprocessing

Important:
MESHFREE needs the surface/shell of the considered geometry. MESHFREE is able to read-in different geometry
formats:

« STL (ASCII)

« FDNEUT (native Fidap Neutral geometry format)

« PAMCRASH

« NASTRAN

« GMSH

- OBJ

Especially OBJ and STL are formats, that can easily be generated by most of the classical CAD-tools. STL is widely used,
however consumes a lot of memory. OBJ is more efficient in memory, however the standard of this format is more
extensive, not all features are implemented in MESHFREE .

The problem using STL or OBJ consists in the fact, that the used usually does not have control over the orientation
(inside/outside) of the shells, which however is a necessary information for MESHFREE .

161

http://gmsh.info/

There are several features to control the orientation during start-up of MESHFREE .

A true control of the orientation and the way of surface triangulation can be taken by using the program GMESH (which is
free). If you intend to work with formats like STL or OBJ (native CAD formats), you can skip this section.

In the tutorials, the geometries are mostly given as GMESH-generated files. It is clear, that the geometry could be given in
different ways, of course.

Goals of this Unit:
« Creation of the geometry with GMSH.

Three Dimensional geometry generation:
If we want to generate the geometrical configuration file with GMSH the following steps have to be done in order to get the
information required by MESHFREE :

« Construction of the geometry

« Generation of a mesh for each face which does not belong to a volume

« Generation of a mesh for each volume (in case a volume has been constructed at all)

« Specification of the boundary type (“WALL”) and naming faces or groups of faces

« 2D the meshing and save the mesh.

In a three dimensional setting volumes are not necessary. It suffices to build the faces, because MESHFREE only requires
the geometrical information for the faces. If any face or boundary is not required even after the generation of the mesh by
GMSH one can simply ignore the unnecessary face or boundary by using the flag “IGNORE” in the ALIAS section in
“USER_common_variables.dat”.

begin_alias{ }
“groupname” = “ IGNORE ”

end_alias
How to generate a geometry using GMSH:

GMSH generates two kinds of files, namely filename.geo and filename.msh. The first file deals with the operations used to
define the geometry and the second file contains the mesh generated by GMSH.
To open GMSH in Linux, you may use a shortcut of the following type:

alias mygmsh="/p/tv/local/Gmsh/gmsh-2.8.3-Linux/bin/gmsh &'

An alias can be defined in the start-up file, such as by editing .bashrc .
1.) kate ~/. bashrc &
2.) Edit alias section.
3.) save the file

Now the shortcut command is active any time a Linux-bash shell is launched.

Now, GMSH can be started by using the command mygmsh (since the alias is defined in this way, one can change this
name accordingly).

At the moment when the GMSH window appears a file untitled.geo at the cd where user has opened the GMSH is
generated.

The interface of GMSH has the following options to use:

Modules

1. Geometry .

2. Mesh.

3. Solver.

We will not use its solver section.

STARTING WITH GMSH:

(Here we generate a geometry using GMSH).

The reader should be familiar with the geometry which will be created in this section; the annulus. The mesh will be of
higher resolution.

162

The following steps will be undertaken:
1.) Create the geometry using the GMSH GUI:

o A rectangle will be formed. This rectangle represents a radial plane through the annulus.

o The plane will be extruded-rotated in order to form a quadrant of the annulus.
o The above step is then repeated, until the complete annulus is formed.

2.) Define physical groups.
3.) Customize the geometry by editing the geometry script file.

4.) Produce a mesh.

Creating the geometry: Forming an annulus with extrusions

Through the interface go to “Geometry>>Elementary entities>>Add>>Point”

and create the three points (2.5,0.0,0.0), (5.25,0.0,0.0), (8.0,0.0,0.0).

I /A) Gmsh - untitled.geo
File Tools Window Help

@e ®

& Modules
O Geametry
] Elementary entities
=1 Add
Parameter
Paint
Straight line
Spline
B-Spline
Circle arc
Ellipse arc
Plane surface
Ruled surface
volume
Translate
Ratate
Scale
Symmetry
Split
Delete
Physical groups
Coherence
Reload
Edit file
Mesh
Solver

N

SE0oXYZQ 118 M0 Gmsh283

Mowe mouse andior enter coordinates
[Press "Shift' to hold position, ‘e’ to add paint or o’ t

/A © Contextual Geometry Definitions ® ®
Parameter‘ Pnint| Translat\un‘ Rutat\un| Scale| Symmetry|

1.2 X coordinate

0.8 Y coordinate

0 Z coordinate

Prescribed mesh element size at point

1.0
01 |01 |01 Snapping grid spacing

Add 7

Figure 1:

The click at “Point” will create a “Contextual Geometry Definitions” window as shown in Figure 1.
At the first three spaces, the coordinates of the wanted point have to be defined and afterwards the point has to been
added. Moving the mouse over the Gmsh window while adding a point may change the value of the coordinates in an

unwanted way.

The above created points should lie on a line along the x-direction and form a radial line across the annulus. Create two
lines: the first line should connect point 1 and point 2 and the second line point 2 and point 3. This can be done by clicking
on “Geometry>>Elementary entities>>Add>>Straight line” and select via mouse the points which form the line. Now,

extrude the lines to create surfaces (“Geometry>>Elementary entities>>Translate>>Extrude line”) as shown in Figure 2.

163

/A () Gmsh - untitied.geo @ ® Flgure 2,‘
File Tools Window Help |

& Modules Select lines

=1 Geometry e q .
51 Elementary enties [Press ‘e’ to end selection or ‘g’ to akbort]

Add
Translate

Paint
Line A @ c 1G y Definiti ®@
Surface
Valume Parameter| Pumt| Translation
Duplicate paint —————
Duplicate line 0 X companent
Duplicate surfac r
Duplicate volum
Extrude point 1 Z companent
Extrude line
Extrude surface

Rotate

Scale

Symmetry

Spiit

Delete

Physical groups

-~ Coherence

— Reload

~—— Editfile

Mesh W

Salver \L %
oo

SE0XYZQ 1:1s M4 0> Gmsh28.3

Rutatiun| Scale‘ Symmetry‘

0 Y component

Fill in (x,y,z) = (0.0,0.0,14.0). Note that both lines should be selected during the extrusion step. Finally change the view of
point, so that you can see the rectangles just created, the result should be something similar as in Figure 3.

Figure 3:

The next step is to extrude-rotate the rectangular surface in order to create the annulus .

1.) Go to the top of the geometry module in the GMSH menu window.
2.) Click on Geometry>>Rotate>>Extrude surface. The contextual Geometry Definitions window will appear, on the
Rotation tab. Also they will now be high-lighted on the graphic window, as red. The window is used to define the axis
of revolution and the sweeping angle. The axis of revolution is defined by specifying any point on it and the
components of a vector parallel to the axis. In addition, the sweeping angle must be specified in radians, in the anti-
clockwise sense.
3.) Change the parameters in the Contextual Definitions window to the following:
0,0,0,0,0,1,pi/2.

164

4.) Pick both the surfaces on the graphic and press “e” (“e” is for adding the selection “u” is for undoing the last
selection and “q” is for abort the mission.). A quarter of the annulus should have been formed in the graphic window,
as shown in left panel of Figure 4.

Figure 4:

Without changing the parameters in the “Contextual Geometry Definitions” window, pick the newly formed surfaces normal
to the x- axis. And press the “e” key, to form half of the annulus. Repeat the procedure to form the complete annulus,
shown in the right panel of Figure 4.

Physical Groups:
In case of 3D, MESHFREE needs only surfaces of the boundaries. So if created at all delete the volumes using
“Geometry>>Delete>>Volume”. Doing so a small ball with yellow color will appear, selecting this volume will turn it red.

1.) Go to the top of the Geometry module in the GMSH menu window.

2.) Click on “Geometry>>Physical groups>>Add>>Surface”. Select the surfaces needed to be specified as
boundaries and press “e”. All the surfaces selected in this way will from one group. If another group should be
formed, pressing “e ” will differentiate between the groups.

3.) Open the script file i.e. filename.geo. Here, the names of the groups can be changed.

Meshing:
Before meshing the normal size has to be changed. In order to do so go to “Tools>>Options>>Mesh>>Visibility>>Normals
and Tangents” and change the first space to 20 (or accordingly as shown in Figure 5).

/A @ Gmsh - untitled.geo @
File Tools Window Help

& Modules

= Geometry

£l Elementary entities
Add

Figure 5:

Translate
Ratate

Line
Surface
Volume
—— Coherence
— Reload

—— Editfile
Mesh

Salver

[Surface faces
W Volume edges

™ Volume faces

Number ¥ [Label type 1 Sampling

Elements T |

0 |O Rha jaua\ityrange

0 0

Size range

[u] 0 Normals and tangents

Seale Cé’"‘gial()ptiuns -Mesh — (@) ®
:\;mmﬁtw Geomet Genera\‘ Advancea‘ VIE\DIth| Aspect| culcr|
Delete Salver [~ Modes I Nade labels
Prx.r;éca\ aroups Post-pro I Lines I Line labels
Point = Surfs [Surface labels

™ Valume labels

]

S0oXxYZQ 11s M4 ED> Gmsh28.3

Also, the Element size factor should be changed to 0.1. Therefore, go to “Tools>>0Options>>Mesh>>General”.

165

Now go to the Mesh section and build a 2D mesh by clicking on “Mesh>>2D". Go to “File” and save the mesh (“File>>Save
Mesh”).

Close GMSH.

Change the name of the files generated by editing its name.

Note:- Before meshing user needs to reload the file (Geometry>>Reload), in the case that changes have been done by the
user that should be reloaded by GMSH.

Understanding the steps of filename.geo:

1 ® cube.geo — KWrite . Figure 6:
File Edit “iew Tools Settings Help

&5 H A © ™

Mew Open Save SaveAs Close Undo Redo

Foint (1) (@, @, &, 1.8}

Foint{2) {@, 1, 6, 1.8};

Line{ly = {2, 1}

Extrude {1, @, @} {
Line{l};

VExtrude {@, @, 1} {
Surface{5}:;

) >

1

Fhysical Surface("top") = {26}4
Fhysical Surface("bottom") = {18};
Physical Surface("in") = {14};
Physical Surface("out") = {22}
Physical Surface("back") = {27}
Physical Surface("front") = {5};

<>

<] <>
Line: 9 Cal: 32 INS LINE cube.gead

Open the file cube.geo in tut3d_01 , a window as in Figure 6 will appear.

The first two lines of the document show that two points have been created followed by their corresponding coordinates.
The third line implies that a line has been generated connecting Point(1) and Point(2).

The fourth line says that in the direction of the x-axis (positive direction) Line{1} has been extruded to form a rectangular
geometry.

Fifth line tells that the surface created has been extruded in the positive direction of z for one unit, to form a cube.

After that each line shows that a physical group has been added each time “e” was pressed (while preparing the geometry
using GMSH). The names of the physical groups can be changed by writing “User_defined_Name” between the brackets
following the text “Physical Surface” .

Note :- While saving the mesh one should check the direction of the normals in GMSH. If normals are pointing out side to
the volume then it is correct if not the flag REV_ORIENT has to be used in front of the alias definitions of the corresponding
surfaces in User_common_variables.dat.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ - OBJ

OoBJ

.obyj file format for geometries

MESHFREE supports surface .obj surface meshes, where the boundary elements of the mesh are triangles or
quadrilaterals.
MESHFREE derives the alias name of the surface entity in AliasForGeometryltems from the given group in the .obj file.

166

Group names for faces and surfaces can be added in .obj file in the following way.

v x_value y_value z_value
v x_value y_value z_value

g GroupName1
fvlv2v3

g GroupName2
fvlv2v3

If no group is given the alias name is taken from the file name.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ - STL

STL

.stl file format for geometries

The current STL reader supports only ASCII representation.
Names for surfaces (solids) can be added in the .stl file in the following way.

solid Name1

facet normal n1 n2 n3
outer loop

vertex vi1v12 v13
vertex v21 v22 v23
vertex v31 v32 v33
endloop

endsolid Name1

If no solid name is given, it is called "face".

Note:
« Upon read-in of the solid, if "name" is written between quotation marks, it will be modified to name (without quotation
marks).
« If the solid name is enumerated with numbers in brackets, e.g. 'solid name(1)’, then MESHFREE stops the
simulation.

« MESHFREE ignores color definition in the .stl file.

Using the wildcard functionality (see AliasForGeometryltems) is recommended in case of additional information in
the solid definition,

e.g. 'solid cube <stl unit=MM>".

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

exportFilef

exportFile{
export the actually imported geometry file in STL or OBJ format

See exportGeometry{ }.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -
exportGeometry{

167

exportGeometry{
export the actually imported geometry file in STL or OBJ format

Export the currently read geometry in STL or OBJ format. These formats can be directly visualized by ParaView.
Export is done either before or after GeometryManipulations are executed, or both.

begin_boundary_elements{ }
include{ FileName} ... exportGeometry{ ARGUMENTS} ...
end_boundary_elements
ARGUMENTS can be one or a subset of:
o OBJ (export in obj format)
« OBJs (export in obj format and separate geometry files for each group)
« OBJc (export in obj format and single geometry file with group names)
o STL (export in stl format)

« BEFORE or BeforeGeometryTransformations (export the geometry exactly as discribed in the original file FileName)

o AFTER or AfterGeometryTransformations (export the geometry after all manipulations have been executed)

The resulting files are written to ExportGeometryDirectory .

Example:

begin_boundary_elements{ }

i.ﬁ.clude{ FileName} ... exportGeometry{ STL, BEFORE, AFTER} ...

éﬁd_boundary_elements

Exports the geometry before and after the GeometryManipulations have been executed. In this way, most preferably
together with the option CONTROL_StopAfterReadingGeometry, one is able to quick-check the consistency of the
GeometryManipulations .

Note: Currently, also the keyword exportFile{ } works in the same way as exportGeometry{ }.

If the exportGeometry{ }-option is used as standalone, i.e.

begin_boundary_elements{ }

i-ﬁ.clude{ FileName}

-rﬁ.anipulate{ "AliasName"}

é%portGeometry{ [STL ,OBJ],AFTER}

end_boundary_elements

a file with the name GIFgeometry.stl or GIFgeometry *.obj is created in ExportGeometryDirectory .

List of members:

ExportGeometryDirectory folder where to export the actually imported geometry
MESHFREE - InputFiles - USER_common_variables - BoundaryElements - include{ -

exportGeometry{ - ExportGeometryDirectory

ExportGeometryDirectory

168

folder where to export the actually imported geometry

The exported files are written to the folders

ExportlnputGeometry BeforeGeometryTransformations/
ExportlnputGeometry AfterGeometryTransformations/

depending on the choice made.

MESHFREE - InputFiles - USER_common_variables - BoundaryElements -

manipulate{
manipulate (move, rotate, ...) the geometry belonging to an alias-group

begin_boundary_elements{ }
manipulate{ "Alias1","Alias2","Alias3",...} ListOfGeometryManipulations

end_boundary_elements

The ListOfGeometryManipulations might contain all valid elements from GeometryManipulations .

manipulatef

The working schedule of MESHFREE with respect to the boundary elements is sequential. Manipulation can be done only

if the appropriate geometry elements (aliases) have already been read in from file.

Note:

« The geometry manipulations are performed for the specified aliases only, i.e. in multiphase simulations all
desired phases/chambers of an alias have to be specified explicitly ("Alias1", "Alias1{2}", ...).

« The use of wildcards is possible (see AliasForGeometryltems).

Example:
« Wrong order

begin_alias{ }

"AliasA" =" ..." # definition of AliasA

end_alias

begin_boundary_elements{ }

manipulate{ "AliasA"} offset{ 1,1,0} rotate{ 0,0,0,3.14,0,0}
include{ File1Containing_AliasA }
end_boundary_elements

« Correct order

begin_alias{ }

"AliasA" =" ..." # definition of AliasA

end_alias

begin_boundary_elements{ }

include{ File1Containing_AliasA }

manipulate{ "AliasA"} offset{ 1,1,0} rotate{ 0,0,0,3.14,0,0}
end_boundary_elements

The true advantage becomes apparent if the feature is used together with the ConstructClause :

169

begin_alias{ }

"AliasA" =" ..." # definition of AliasA

end_alias

begin_boundary_elements{ }

include{ File1Containing_AliasA_} # read in geometry
end_boundary_elements

begin_construct{ }

"xMidPoint" = CONSTRUCT (%CONSTRUCT_BoxMidPoint% , 0.5, "AliasA") # determine the mid point of the geometry

end_construct
begin_boundary_elements{ }

manipulate{ "AliasA"} rotate{ &xMidPoint(1)& , &xMidPoint(2)& , &MidPoint(3)& , 2.1, 3.3, 0.1} # rotate about the mid

point of the geometry
end_boundary_elements

MESHFREE - InputFiles - USER_common_variables - CODI

3.1.7. CODI

solve additional COnvection-DIffusion-problems (CODI)

COnvection Dlffusion Equation

Suppose there is a scalar item @ and there exists a MESHFREE -index for @ , such as %ind_PHI% .

The general type of equation to be solved is

d®/dt + VT (vpnp - @) + 07 - VO +A- @ =p-VI(D-V®) + Q.

In USER_common_variables , the definition would look like:

CODI_Vimplicit ($Material$,%ind_PHI%) = (vimp_x, vimp_y, vimp_z)
CODI_V ($Material$,%ind_PHI%) = (v_x, V_y, v_2z)

CODI_A ($Material$,%ind_PHI%) = A

CODI_rho ($Material$,%ind_PHI%) = rho

CODI_D ($Material$,%ind_PHI%) = D

CODI_Q ($Material$,%ind_PHI%) = Q

) =
) =

These items are optional. Therefore, by the reduced set

CODI_A ($Material$,%ind_PHI%) = A
CODI_Q ($Material$,%ind_PHI%) = Q

for each point the ODE d®/dt + A - ® = (Q will be solved for instance.

In order to assure some minimum and maximum conditions, the solution @ can be restricted by:
CODI_min_max ($Material$,%ind_PHI%) = (min_PHI, max_PHI, OPTIONAL:AllowedSlopePHI)
MESHFREE simply cuts the solution of @ after solving the differential equation.

If AllowedSlopePHI is given, then the solution is adapted such that

|[V®||2 < AllowedSlopePHI.

AllowedSlopePHI, naturally, has to be positive.

170

Boundary conditions for the problem are set with BCON .

Function Value Assignment

Besides differential equations, one can also just assign a value to ¢ by an algebraic equation:

CODI_eq ($Material$,%ind_PHI%) = RightHandSideExpression

Usually, the user does not want to provide additional PDEs for items like velocity, pressure etc
because they are already solved by MESHFREE in the most efficient way. In order to construct new,
additional MESHFREE -variables, UserDefinedIndices %indU_...% (or %ind_addvar% , legacy code) can be used.

See also CODI_min_max and CODI_min_max_RejectLinearSolution .

List of members:

CODI_A
CODI_D

CODI_eq

CODI_lIntegration

CODI_min_max

See CODI
See CODI
See CODI
CODlI type of integration and time step size

set lower and upper bound for any MESHFREE variable

CODI_min_max_RejectLinearSolu rejection of the solution of a sparse linear system if minimum-maximum criteria are not

tion
CODI_Q
CODI_rho
CODI_V

CODI_Vimplicit

MESHFREE -

CODI_A
See CODI

See CODI .

MESHFREE -

CODI_D
See CODI

See CODI .

MESHFREE -

fulfilled

See CODI

See CODI

See CODI

See CODI
InputFiles - USER_common_variables - CODI - CODI A
InputFiles - USER _common_variables - CODI - CODI D

InputFiles - USER_common_variables - CODI - CODI_Integration

CODI_Integration
CODI type of integration and time step size

171

CODI_Intagration($Material$,%ind_PHI%) = (TypeOfintegration, OPTIONAL: CODI_dt)

« either %CODI_implicit% (default) or %CODI_explicit%

« OPTIONAL: give a time step size for integration of this particular CODI, which might be bigger than the current

numerical time step size of LIQUID -integration.

If not given, the CODI_dt is as big as the time step size of the running simulation.
CODI_dt chosen smaller than the time step size of the running simulation be be ignored. In this case, reduce the

time step size in general.

MESHFREE - InputFiles - USER_common_variables - CODI - CODI_Q
CODI_Q

See CODI

See CODI .

MESHFREE - InputFiles - USER_common_variables - CODI - CODI_V
CODIL V

See CODI

See CODI.

MESHFREE - InputFiles - USER_common_variables - CODI - CODI_Vimplicit
CODI_Vimplicit

See CODI

See CODI .

MESHFREE - InputFiles - USER _common variables - CODI - CODI eq
CODI_eq

See CODI

See CODI.

MESHFREE - InputFiles - USER _common variables - CODI - CODI_min_max
CODI_min_max

set lower and upper bound for any MESHFREE variable

Equivalent to ENFORCE_min_max .

MESHFREE - InputFiles - USER_common_variables - CODI -

CODI_min_max_RejectLinearSolution

CODI_min_max_RejectLinearSolution

rejection of the solution of a sparse linear system if minimum-maximum criteria are not fulfilled

Equivalent to ENFORCE_min_max_RejectLinearSolution .

172

MESHFREE - InputFiles - USER_common_variables - CODI - CODI_rho

CODI_rho
See CODI

See CODI .

MESHFREE - InputFiles - USER_common_variables - COUPLING

3.1.8. COUPLING

couple the running MESHFREE simulation to another, currently running simulation

Currently, only MESHFREE -MESHFREE coupling is implemented.

The COUPLING functionality, however, is set up in a general way,
such that coupling to other codes shall be possible.

List of members:

BFT coupling to other running simulations by file transfer (BFT=ByFileTransfer)

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT

BFT

coupling to other running simulations by file transfer (BF T=ByFileTransfer)
All necessary data of the coupling are transfered by files (unformatted, streaming).

List of members:

CouplingBFT_WorkingDirectoryOfOtherSimulat ~ working directory of another simulation to which couling has to be

ion performed
CouplingBFT_TypeOfOfOtherSimulation give the type of the other simulation (MESHFREE, PAMCRASH,
ABAQUS, ...)
CouplingBFT_DataRequest launch data request to another running MESHFREE-simulation
CouplingBFT_Synchronization synchronize two running simulations if coupled to each other
MESHFREE - InputFiles - USER common_variables - COUPLING - BET -

CouplingBFT_DataRequest
CouplingBFT_DataRequest

launch data request to another running MESHFREE-simulation

This simulation sends out positions (i.e. point coordinates) to another MESHFREE simulation. At these points, requested
function values are interpolated
by least-squares-approximation

173

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = '/a/b/c/MF2'

CouplingBFT_Synchronization (1) = (%CouplingBFT_RequestOtherProcessToWait%)
CouplingBFT_DataRequest (1) = (AfterHowManyTimeSteps, [FunctionalToMarkTheRequestPoints],
[ChamberlndexInMF2], listOf(%ind_...%), listOf(%indU_...%))

AfterHowManyTimeSteps : data request is launched with a certain frequency (that means one can prevent MESHFREE
from doing that data request in every time step)

FunctionalToMarkTheRequestPoints : a typical RightHandSideExpression in order to mark those points at which data is
requested

ChamberindexInMF2 : iterpolate data out of this chamber in MF2
listOf(%ind_...%) : list of entities in MF2 (given by their proper %ind_...%) that have to be interpolated

listOf(%indU_...%) : list of indices where the interpolation results have to be stored in MF1

Example:
Suppose, simulation MF1 runs water-flow for which wind forces have to be taken into account

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = /a/b/c/MF2' # path of MF2

CouplingBFT_Synchronization (1) = (%CouplingBFT_RequestOtherProcessToWait%, 0) # let MF2 be in standby for all
times

interpolate the velocity in first chamber of MF2 at the locations for x>0.1 and store them ind the indices %indU_v(n)%
CouplingBFT_DataRequest (1) = (10, [Y%ind_x(1)%>0.1], 1, %ind_v(1)% , %ind_v(2)% , %ind_v(3)% , %indU_v(1)%,
%indU_v(2)%, %indU_v(3)%)

Simulation MF2 is in standby. It contains, on its pointcloud, the results of a stationary wind-profile. The wind profile might
be a result of a MESHFREE -simulation,
or it might have been read from file as result of another flow simulation such as openFOAM, FLUENT, etc.

#UCVCODE

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = /a/b/c/MF1' # path of MF1

step 1: let us read in some flow solution of another simulation tool by MESHFREE's read-in-functionality, see for example
ASCII___RIPC____

step 2: allow MF1 to launch data requests to this running MESHFREE process (MF2),

this also means that MF1 will put it in pure standby, no simulation is performed in MF2,

only answering to data requests.

UCVCODEH# frame#

List of members:
DataStructure_ToBeSentToFPM exact data structure to send data request to MESHFREE

DataStructure_SentBackFromFPM exact data structure returned by MESHFREE upon data request

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT -
CouplingBFT_DataRequest - DataStructure SentBackFromFPM

DataStructure SentBackFromFPM

exact data structure returned by MESHFREE upon data request

This is the documentation of the data structure send back from MESHFREE after launching a data request by
DataStructure_SentToFPM .

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT -
CouplingBFT_DataRequest - DataStructure ToBeSentToFPM

174

DataStructure_ToBeSentToFPM
exact data structure to send data request to MESHFREE

This is the documentation of the data structure to be sent to MESHFREE in order to launch a data request at a set of
locations.

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT -
lingBFT_Synchronization

CouplingBFT_Synchronization

synchronize two running simulations if coupled to each other

The simulation running in the folder '/a/b/c/MF1' requires the following lines:

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = '/a/b/c/MF2' # couple to the simulation running in this folder
CouplingBFT_Synchronization (1) = (%CouplingBFT_RequestOtherProcessToWait%) # request the other simulation to
wait for the current simulation

The simulation running in the folder '/a/b/c/MF2' requires the following lines:

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = '/a/b/c/MF1' # couple to this simulation
CouplingBFT_Synchronization (1) = (%CouplingBFT_RequestOtherProcessToWait%) # this line is optional if it is clear
that this simulation runs faster

The simulation running in /a/b/c/MF1" will create in the folder ‘/a/b/c/MF2/CouplingBFT/MF1'
the file 'Synchronization_RequestToWait' which contains the current simulation time of simulation MF1.
Simulation MF2 interpretes this time as strong request and will continue only, if t(MF1) >= t(MF2).

The waiting business makes sense only if the two simulations exchange data. See CouplingBFT_DataRequest .

If no synchronization request is launched, no waiting/standby takes place, each simulation runs on its own. However, still,
each simulation checks for CouplingBFT_DataRequest .

List of members:

%CouplingBFT_RequestOtherProcessToWait% request another running simulation to wait for myself

%CouplingBFT_RequestMyselfToWait% request myself (current simulation) to wait for another running simulation
MESHFREE - InputFiles - USER_common_variables - COUPLING - BET -

CouplingBFT_Synchronization - %CouplingBFT_RequestMyselfToWait%

%CouplingBFT_RequestMyselfToWait%

request myself (current simulation) to wait for another running simulation

TO BE IMPLEMENTED SOON

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT -
CouplingBFT_Synchronization - % lingBFT R herPr ToWait%

%CouplingBFT_RequestOtherProcessToWait%

request another running simulation to wait for myself

175

CouplingBFT_WorkingDirectoryOfOtherSimulation (1) = '/a/b/c/MF2' # couple MF1 to the simulation running in this folder
(MF2)

CouplingBFT_Synchronization (1) = (%CouplingBFT_RequestOtherProcessToWait% , OPTIONAL:
timeAtWhichTheOtherProcessHasToWait) # request the other simulation to wait for the current simulation

1.) if no optional argument is given, then the present simulation sends its current time t(MF1) to MF2,

running in '/a/b/c/MF2'. If this process agrees to couple, then it will go into standby modus if t(MF2) > t(MF1) .

MF2 then regularly checks the timeAtWhichTheOtherProcessHasToWait sent by MF1 until t(MF2) <= t(MF1)

2.)If the oprional argument is given, then MF2 goes to standby, if t(MF2) >
timeAtWhichTheOtherProcessHasToWait

Remarks:
1.)in standby modus, MESHFREE regularly (every 0.01 seconds) if new synchronization or data request have
arrived.
2.) by setting timeAtWhichTheOtherProcessHasToWait = 0, MF2 will be always in standby, waiting for data requests
only, see CouplingBFT_DataRequest .

MESHFREE - InputFiles - USER_common_variables - COUPLING - BFT -
CouplingBFT_TypeOfOfOtherSimulation

CouplingBFT_TypeOfOfOtherSimulation
give the type of the other simulation (MESHFREE, PAMCRASH, ABAQUS, ...)

Currently, only coupling to other MESHFREE processes is implemented, so this statement is optional.
Syntax:
CouplingBFT_TypeOfOfOtherSimulation (n) = %CouplingBFT_OtherSimulation_IsFPM%

This is also the default.

List of members:

%CouplingBFT_OtherSimulation_IsFPM% other running (coupled) simulation is MESHFREE
MESHFREE - InputFiles - USER_common_variables - COUPLING - BF

CouplingBFT_WorkingDirectoryOfOtherSimulation

CouplingBFT_WorkingDirectoryOfOtherSimulation
working directory of another simulation to which couling has to be performed

CouplingBFT_WorkingDirectoryOfOtherSimulation (n) = 'FullPath_Or_relativePath'
Coupling to the n-th process which runs in the given directory.

If two (or more) processes are to couple, then this statement is essential.

If two (or more) MESHFREE -processes are to couple, all MESHFREE processes have to give this link to the other running
simulation.

In fact, this statement finally allowes that other processes send requests to the current process.

If this statement is given, a local folder 'CouplingBFT" is created. It contains subfolders, whose names are the ones of the

coupled simulations.
A subfolder with the own name is created as well.

176

MESHFREE - InputFiles - USER_common_variables - nsisten hecksA r

3.1.9. ConsistencyChecksAtStartup

check the physical/mathematical consistency for user-given input data

ConsistencyChecksAtStartup = (Identification, RightHandSideExpression , WhatShallMESHFREEdo,
"ErrorOrWarningText")

ConsistencyChecksAtStartup = (Identification, RightHandSideExpression , WhatShallMESHFREEdo, "Warning or error
text", SomeExpression, "more text / more text in the next line", "// And even more text in the next line")

Identification:
« -1 (check done after reading geometry, but before filling points)
« 0 (check done before the first time step, i.e. after filling the geometry by points)
« N (check done after each time cycle until N-th time cycle is reached)

RightHandSideExpression: If positive, then MESHFREE will handle the problem. In this case, it depends on what is
given in WhatShallMESHFREEdo.

SomeExpression: Can be of the type RightHandSideExpression . It shall deliver a numerical value.

WhatShallMESHFREEdo:
« %ConsistencyChecksAtStartup_STOP%
« %ConsistencyChecksAtStartup_ WARNING%

"ErrorOrWarningText": Text to appear in the warnings file. In order to have more readable text, use '//' in order to invoke
a line break.

Example:

begin_alias{ }

"H_MESH" = "0.001" # user-defined triangulation size

"ScaleGeo" = "1.0" # user-defined scaling of the geometry

end_alias

begin_construct{ }

"IGESmin" = CONSTRUCT (%CONSTRUCT_BoxMin% , "tube", "face", "out", "outflow") # minimum point enclosing box

"IGESmax" = CONSTRUCT (%CONSTRUCT_BoxMax% , "tube", "face", "out", "outflow") # maximum point enclosing
box

"IGESdx" = "(&IGESmax(1)&-(&IGESmin(1)&))" # side length enclosing box, x-component

"IGESdy" = "(&IGESmax(2)&-(&IGESmin(2)&))" # side length enclosing box, y-component

"IGESdz" = "(&IGESmax(3)&-(&IGESmin(3)&))" # side length enclosing box, z-component

end_construct

ConsistencyChecksAtStartup (1) = (-1, [sqrt(&IGESdx& "2 + &IGESdy& "2 + &IGESdz& *2) > 1000* &H_MESH&],
%ConsistencyChecksAtStartup. WARNING% ,

"Inconsistent dimensions of the problem. ",

"//Length scale (x,y,z) of IGES file = (", [&I GESdx&], [&IGESdy&], [&IGESdz&], "). ",

"//Length scale of triangles is H_MESH =", &H_MESH& , ". ",

"//Maybe the wrong scaling factor. Currently, ScaleGeo =", &ScaleGeo& , ". ",

"//Or, maybe the wrong meshsize: H_ MESH =", &H_MESH&)

ConsistencyChecksAtStartup (2) = (-1, [&H_MESH& > 0.1], %ConsistencyChecksAtStartup_ WARNING% ,

"Mesh size seems too big. H MESH =", &H_MESH& , ". //The mesh size has to be given in meters, no matter what is
the unit system of //the appropriate IGES file")

177

List of members:

%ConsistencyChecksAtStartup_ STOP% stop MESHFREE if the consistency check applies
%ConsistencyChecksAtStartup_ WARNING% write a message in the warnings file if the consistency check applies
MESHFREE - InputFiles - USER_common_variables - nsisten hecksA r

%ConsistencyChecksAtStartup STOP%

%ConsistencyChecksAtStartup_STOP%
stop MESHFREE if the consistency check applies

MESHFREE will stop. The text, which is given in the ConsistencyChecksAtStartup command, is launched as error
message.

MESHFREE - InputFiles - USER_common_variables - nsisten hecksA r
%ConsistencyChecksAtStartup WARNING%

%ConsistencyChecksAtStartup_ WARNING%
write a message in the warnings file if the consistency check applies

MESHFREE will NOT stop. Instead, the text, which is given in the ConsistencyChecksAtStartup command, is put in the
warnings file.

MESHFREE - InputFiles - USER_common_variables - Curves

3.1.10. Curves

define curves in the input file

In MESHFREE , curves are tables of values that can be used to assign any physical or geometrical quantity,
such as density depending on pressure or viscosity depending on temperature. They are defined in a begin_curve{
environment.

begin_curve{ $CurveName$ }

end_curve

We distinguish between 1D_Curves and 2D_Curves , for details see there.
Once a curve is defined, it can be used in a RightHandSideExpression , e.g. in a boundary condition:

BC_T ($wall$)=(%BND_DIRICH% , curve{ $CurveName$ })

Or within equations:

[... curve($CurveName$) ...]

They return linearly interpolated values between the given interpolation points.

List of members:
1D_Curves define curves with one independent variable

2D_Curves define curves with two independent variables

178

MESHFREE - InputFiles - USER_common_variables - Curves - 1D _Curves

1D_Curves
define curves with one independent variable

1D curves define a relationship between an independent variable (in the first column) and one or more dependent
variables (columns 2 and more) by giving data in a tabular way. Given a value for the independent variable, it will return
linearly interpolated values for the dependent variable columns.

After the begin_curve{ statement, a default independent variable can be specified by the user with depvar_default . If this
is not specified, the default independent variable is the simulation time, %ind_time% .

The data for the independent variable is in the first column and always has to be sorted in ascending order.

Example 1: density depending on temperature (ONE depending variable), first the definition:

begin_curve{ $DensityOnTemperature$ } depvar_default{ %ind_T% }
-273.15 1100

01000

41050

100 990

end_curve

and then the usage:

density(MAT_user) = curve{ $DensityOnTemperature$ }

If there are several dependent variables, the number has to be indicated by nb_functions , see the example below.

Example 2: gravity components depending on time (SEVERAL depending variables)

begin_curve{ $GravityOnTime$ } depvar_default{ %ind_time% } nb_functions {3}
000-9.81

100-9.81

1.01 00 9.81

10 00 9.81

end_curve

Note:
« Currently, it is not possible to use Equations in the independent variable column, i.e. equn{...} or []. This is only
possible for the dependent variables.
« However, a ConstructClause can be used to define aliases that can be referenced in the independent variable
column. Simple arithmetics are allowed in their definition; however, blanks are not. As a ConstructClause is
evaluated only at the start of a simulation, only numbers or refrences to aliases can be used in the definition.

Example 3: curve with ConstructClause -based aliases in independent variable

179

begin_alias{ }

"t ="1"

"t2" = "3"

end_alias

begin_construct{ }

"T_StartTest" = "&t1&" # result is 1

"T_EndTest" = "&t1&+&t2&" # result is 4; no blanks allowed
end_construct

begin_curve{ CV_test } depvar_default{ %ind_time% }
0.00.0

&T_StartTest& 1.0

&T_StartTest& 1.0

&T_EndTest& 1.0

&T_EndTest& 1.0

10.0 0.0

end_curve

« If no dependent variable is specified, the simulation time at which the curve is interpolated will be used. For
example, removing depvar_default{ %ind_time% } in Example 2 while still calling the curve without argument, will
lead to the same result as Example 2 would.

To overwrite a depvar_default by the standard behavior of using the simulation time, one can evaluate the curve
with argument zero, e.g.

curve{ $DensityOnTemperature$ }{0}

While the standard behavior and the use of %ind_time% is almost always equivalent, there can be niche cases
where using %ind_time% leads to different results: For example, up until beta2020.08 of MESHFREE , using
%ind_time% in a %PUBLICVALUE% integration statement would return uninitialized values on MPI processes with
no points, while the standrad behavior would return the expected time. This is due to the fact that, for the case of
%ind_time% , point data is acessed to retrieve time. If there are no points, no valid time can be retrieved. On the
other hand, for the standard behavior, a global time variable is used, which is valid on every MPI process. Note that,
while this specific interaction was algorithmically correct, it should, for convenience sake, not occur in newer
versions (see %PUBLICVALUE%).

List of members:
nb_functions defines the number of dependent variables in 1D curves

depvar_default defines the index for the independent variable in 1D curves

MESHFREE - InputFiles - USER_common_variables - Curves - 1D _Curves - depvar_default

depvar_default
defines the index for the independent variable in 1D curves

Options:

« Definition based on existing MESHFREE -variables (see Indices) by enclosing %-signs
begin_curve{ $...$ } depvar_default{ %ind_T% }

end_curve

- Definition based on Equations by enclosing the equation name by curly brackets

180

begin_curve{ $...$ } depvar_default{ equn{ EQN_radius }}

end_curve

begin_equation{ EQN_radius }

sqrt(Y %ind_x(1)% "2 + Y %ind_x(2)% "2 + Y %ind_x(3)% "2)
end_equation

MESHFREE - InputFiles - USER_common_variables - Curves - 1D_Curves - nb_functions

nb_functions
defines the number of dependent variables in 1D curves

The keyword nb_functions defines the number of dependent variables in a 1D curve.

Example: 1D curve with one independent (time) and three dependent variables. The values for the dependent
variables are found in the second to fourth column of the table.

begin_curve{ $GravityOnTime$ } depvar_default{ %ind_time% } nb_functions {3}
000-9.81

100-9.81

1.01 00 9.81

1000 9.81

end_curve

MESHFREE - InputFiles - USER_common_variables - Curves - 2D Curves

2D_Curves
define curves with two independent variables

2D curves are characterized by a vertical and a horizontal independent variable as well as one dependent variable.

The first row is the horizontal variable (dhj, padded by a void 0.0 at the beginning).
The first column is the vertical variable (dvi). Both variables have to be sorted ascendingly.
The values inside the table (rij) represent the corresponding results.

begin_curve{ $CurveName$ }, depvar_horizontal {...}, depvar_vertical {...}
0.0 dh1 dh2 ... dhm

dvliri1ri2...rim

dv2r21r22 ... r2m

dvnrni 2 ... rnm
end_curve

Example: impact angle depending on velocity magnitude and mean diameter

181

begin_curve{ $angle_of impact$ }, depvar_horizontal{ equn{ $velocity magnitude$ }}, depvar_vertical{ equn{
$mean_diameter_micrometers$ }}

0.0 0.0 22.0 32.0 45.0 56.0 63.0 77.0

10.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01

54.0 0.0 0.98 1.50 2.66 3.56 4.69 5.93

107.50.0 10.42 15.92 28.24 37.90 49.84 63.11

152.5 0.0 32.04 48.94 86.80 116.52 153.22 194.00

215.00.0 91.73 140.10 248.51 333.57 438.65 555.40

427.5 0.0 634.38 968.87 1718.59 2306.84 3033.49 3840.88

605.0 0.0 1522.37 2325.07 4124.23 5535.88 7279.68 9217.24
855.0 0.0 3426.73 5233.56 9283.34 12460.85 16386.02 20747.32
end_curve

Note:
« Instead of references to equations by equn{..}, also references to MESHFREE variables can be used, i.e.
depvar_horizontal{ %ind_...%)}.
« Currently, it is not possible to use Equations in the horizontal (dhj) and vertical (dvi) variables, i.e. equn{...} or []. This
is only possible for the results (rij).
o However, a ConstructClause can be used to define aliases that can be referenced in the horizontal and vertical
variables, c.f. 1D_Curves for an example.

List of members:
depvar_horizontal defines the index for the horizontal independent variable in 2D curves

depvar_vertical defines the index for the vertical independent variable in 2D curves

MESHFREE - InputFiles - USER_common_variables - Curves - 2D _Curves -
depvar_horizontal

depvar_horizontal
defines the index for the horizontal independent variable in 2D curves

Options:
« Definition based on existing MESHFREE -variables (see Indices) by enclosing %-signs

begin_curve{ $...$ }, depvar_horizontal{ %ind_T% }, depvar_vertical {...}

end_curve

« Definition based on Equations by enclosing the equation name by curly brackets

begin_curve{ $...$ }, depvar_horizontal{ equn{ EQN_radius }}, depvar_vertical {...}

end_curve

begin_equation{ EQN_radius }

sqrt(Y %ind_x(1)% "2 + Y %ind_x(2)% "2 + Y %ind_x(3)% "2)
end_equation

Note: The options for depvar_horizontal and depvar_vertical can be mixed (i.e. one can use
the definition based on existing MESHFREE -variables while the other uses the definition
based on Equations).

MESHFREE - InputFiles - USER_common_variables - Curves - 2D Curves - depvar_vertical

182

depvar_vertical
defines the index for the vertical independent variable in 2D curves

Options:
« Definition based on existing MESHFREE -variables (see Indices) by enclosing %-signs

begin_curve{ $...$ }, depvar_horizontal {...}, depvar_vertical{ %ind_T% }

end_curve

« Definition based on Equations by enclosing the equation name by curly brackets

begin_curve{ $...$ }, depvar_horizontal {...}, depvar_vertical{ equn{ EQN_radius }}

end_curve

begin_equation{ EQN_radius }

sart(Y %ind_x(1)% "2 + Y %ind_x(2)% "2 + Y %ind_x(3)% "2)
end_equation

Note: The options for depvar_horizontal and depvar_vertical can be mixed (i.e. one can use
the definition based on existing MESHFREE -variables while the other uses the definition
based on Equations).

MESHFREE - InputFiles - USER_common_variables - DropletSource

3.1.11. DropletSource

generate a sequence of spherical droplets

DropletSource (n) = (V_dot, sizeOfNewDroplets, xPosOfNewDroplet, yPosOfNewDroplet, zPosOfNewDroplet, iChamber,
$Material$, OPTIONAL %DropletSource_doNotCreateDropletsOutside%)

n: index of the DropletSource sequence (up to 99)

V_dot: volume flux to be generated by the droplet sequence in m”3/s

sizeOfNewDroplets: volume of next droplet in the sequence in m”3

xPosOfNewDroplet: x-position of next droplet in the sequence

yPosOfNewDroplet: y-position of next droplet in the sequence

zPosOfNewDroplet: z-position of next droplet in the sequence

iChamber: chamber index to which each new droplet of the sequence will have to belong

$Material$: material index to which each new droplet will have to belong
%DropletSource_doNotCreateDropletsOutside% : give this flag to prevent creation of droplets outside of EVENT -cuts,

such that V_dot is preserved for the reduced creation area
Example:

DropletSource (1) = (5, [&Hmax& 73], [20*rand(1)], [1.5*rand(-1)], [2], 1, $Mat1$) # the droplet positions to be created
are random: 0 < x < 20

#-15<y<15

#z=2

183

In order to generate a unique sequence of droplets, the functionalities
given in real() can be used, especially in TwoArguments the options

« %DropletSource_provideCounter% ,

» %DropletSource_provideTargetVolume% ,

« %DropletSource_provideCurrentVolume% .

REMARK: Radius correction
From the volume 1/ given by the user, we compute the radius r of the sphere classically by

/373
" 4

However, taking into account that the volume of the discrete particle sphere will be less (linear approximation of a convex,
curved manifold), we correct the radius by

2
2r

where « is the value of radius_hole and }, is the current smoothing length.
DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - EVENT

3.1.12. EVENT

events defined for the point cloud

An EVENT is a feature, that evaluates a event_trigger_expression on all MESHFREE points at the beginning of the
timestep. If the trigger expression is evaluated positively an action is performed. The action to be performed is defined by
the type of event and the following types are available:

In USER_common_variables the definition of an event looks as follows:

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_FunctionManipulation% , %ind_xyz%, expression_xyz
[,%ind_abc%, expression_abc ...])
EVENT ($EvInd2$) = (event_trigger_expression, %EVENT_DeletePoint% , OPTIONAL:MessageCode)

EVENT ($EvInd3$) = (event_trigger_expression, %EVENT_StopFPM% , OPTIONAL:MessageCode)
EVENT ($Evind4$) = (event_trigger_expression, %EVENT_AbortFPM% , OPTIONAL:MessageCode)
EVENT ($EvInd5$) = (event_trigger_expression, %EVENT_Msg% , MessageCode)

EVENT ($EvInd6$) = (event_trigger_expression, %EVENT_WriteRestart% , OPTIONAL:MessageCode)
EVENT ($EvInd7$) = (event_trigger_expression, %EVENT_WriteResume% , OPTIONAL:MessageCode)
EVENT ($EvInd8$) = (event_trigger_expression, %EVENT_SaveResults% , OPTIONAL:MessageCode)

For each MESHFREE point, the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered and the action is performed.

The event_trigger_expression as well as the manipulations for the indices are defined by Equations .
184

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.DropletSource

The (optional) MessageCode is a non-negative integer, that associates the event with an EventMessage .

In case the event is triggered within a timestep the EventMessage is printed to the output and written to the warnings-file (
once per timestep).

In this way, the user can check on the triggering of the defined events.

Good to know

« The soft variables on the left hand side of the definition are optional. If none is given, then MESHFREE counts the
number of event statements by their appearance in USER_common_variables .
Warning: The syntax with and without soft variables must not be mixed.

« Instead of a soft variable $EvInd$, also the legacy syntax with natural number n is possible. In this case, all event
statements in USER_common_variables have to be numbered consecutively to prevent overwriting.

« Event types 3 and 4 can be used for further stopping criteria besides time and number of time steps.

- Additional feature (for performance): Execute the event handler to execute the particular event only every
N_CycEvent time steps by prepending
the additional parameters %EVENT_PerformAfterHowManyTimeCycles% and N_CycEvent to the
RightHandSideExpression .

EVENT ($EvInd9$) = (%EVENT_PerformAfterHowManyTimeCycles% , N_CycEvent, event_trigger_expression,
%EVENT_...%, ...)

« Currently, it is possible to define 40 EVENT definitions.

List of members:

%EVENT_PerformAfterHowManyTimeCycles% cycle of event execution
%EVENT_FunctionManipulation% pointwise function manipulation event handle
%EVENT_DeletePoint% deletion of point event handle
%EVENT_StopFPM% stop MESHFREE event handle
%EVENT_AbortFPM% abort MESHFREE event handle
%EVENT_Msg% print message event handle
%EVENT_WriteRestart% write restart event handle
%EVENT_WriteResume% write resume event handle
%EVENT_SaveResults% save computational results event handle
EventMessage event message with message code
MESHFREE - InputFiles - USER_common_variables - EVENT - %EVENT_ AbortFPM%

%EVENT_AbortFPM%
abort MESHFREE event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_AbortFPM% , OPTIONAL:MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered
and MESHFREE is aborted with an error.

The event_trigger_expression is defined by Equations .

185

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage ,
which is printed once if that event has been triggered.

MESHFREE - InputFiles - USER_common variables - EVENT . %EVENT_ DeletePoint%

%EVENT_DeletePoint%
deletion of point event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_DeletePoint% , OPTIONAL:MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered and the point is deleted.

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage , which is printed
once if that event has been triggered.

The event_trigger_expression is defined by Equations .

Note:

« If points on and in the vicinity of BoundaryElements (geometry) are deleted at the same time by such an EVENT ,
try to do it orthogonal to the geometry. Unphysical behavior might be observed otherwise.

« If surface tension sigma > 0 and thin films are deleted by such an EVENT , the classical free surface boundary
condition
for the hydrostatic pressure should be replaced by a Dirichlet condition in the vicinity of the EVENT . Without this
adaption, the thin films close to the EVENT might swell unphysically.
Example:

EVENT ($EvInd1$) = ([if(Y %ind_x(1)% > 0.5) :: 1.0 else :: 0.0 endif], %EVENT_DeletePoint%)

BC_p (0) = ([if(Y %ind_x(1)% > 0.5-0.1*Y %ind_h%) :: %BND_DIRICH% else :: %BND_free_implicit% endif],
[if(Y %ind_x(1)% > 0.5-0.1*Y %ind_h%) :: 0 else :: 0 endif])

MESHFREE - InputFiles - USER_common_variables - EVENT -
%EVENT _FunctionManipulation%

%EVENT_FunctionManipulation%

pointwise function manipulation event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_FunctionManipulation% , %ind_xyz%, expression_xyz
[,%ind_abc%, expression_abc ...])

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered and

for the given indices (%ind_xyz% , %ind_abc%, ..) the defined function manipulations (expression_xyz,
expression_abc , ...) are executed.

The event_trigger_expression as well as the manipulations for the indices are defined by Equations .

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage , which is printed
once if that event has been triggered.

See %ind_event_FunctionManipulation% for further information.
186

Note: A function manipulation event is classified as a geometrical function manipulation event, if it changes at least one of:
e %ind_x(1)% , %ind_x(2)% , %ind_x(3)%
e %ind_n(1)% , %ind_n(2)% , %ind_n(3)%
e %ind_kob%
e %ind_sha(1)% , %ind_sha(2)% , %ind_sha(3)% , %ind_sha(4)%
e %ind_BC%

Points that have been influenced by a geometrical function manipulation event are marked for the
free surface check irrelevant of their current kob-value (%ind_kob%).

See %ind_event_GeometricalFunctionManipulation% for further information.

MESHFREE - InputFiles - USER common_variables - EVENT - %EVENT Msg%

%EVENT_Msg%
print message event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_Msg% , MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered

and the defined MessageCode is printed once. MessageCode is a non-negative integer, that associates the event with an
EventMessage .

MESHFREE - InputFiles - USER_common_variables - EVENT -
%EVENT_PerformAfterHowManyTimeCycles%

%EVENT _PerformAfterHowManyTimeCycles%

cycle of event execution

Force the event handler to execute an event only every N_CycEvent time steps by:

EVENT ($Evind1$) = (%EVENT_PerformAfterHowManyTimeCycles% , N_CycEvent, event_trigger_expression,
%EVENT_...%, ...)

The two additional, optional parameters (%EVENT_PerformAfterHowManyTimeCycles% , N_CycEvent) have to come
at the beginning of the RightHandSideExpression .

MESHFREE - InputFiles - USER_common_variables - EVENT - %EVENT_SaveResults%

%EVENT_SaveResults%
save computational results event handle

EVENT ($EvInd1$) = (event_trigger_expression, %EVENT_SaveResults% , OPTIONAL:MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered
and the computational results are saved independent of the definition given in SAVE_interval .

The event_trigger_expression is defined by Equations .

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage ,

187

which is printed once if that event has been triggered.

MESHFREE - InputFiles - USER_common_variables - EVENT - %EVENT_ StopFPM%

%EVENT_StopFPM%
stop MESHFREE event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_StopFPM% , OPTIONAL:MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered

and MESHFREE is stopped (clean normal exit).

The event_trigger_expression is defined by Equations .

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage ,
which is printed once if that event has been triggered.

MESHFREE - InputFiles - USER_common_variables - EVENT - %EVENT_WriteRestart%

%EVENT_WriteRestart%
write restart event handle

EVENT ($EvInd1$) = (event_trigger_expression, %EVENT_WriteRestart% , OPTIONAL:MessageCode)

For each MESHFREE point, the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered
and a restart file is written independent of the definition given in RestartStepSize .

The event_trigger_expression is defined by Equations .

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage ,
which is printed once if that event has been triggered.

Note: In case of using %RESTART_sequence% to define the RestartStepSize , the user can limit the number of kept
restart

files triggered by EVENT similarly to the number of kept restart files triggered by standard. See %RESTART_sequence%
for details.

MESHFREE - InputFiles - USER_common_variables - EVENT - %EVENT_WriteResume%

%EVENT_WriteResume%

write resume event handle

EVENT ($Evind1$) = (event_trigger_expression, %EVENT_WriteResume% , OPTIONAL:MessageCode)

For each MESHFREE point the event_trigger_expression is evaluated. If it is larger than zero for the considered point,
the event is triggered
and a resume file is written. See checkpoint for details.

The event_trigger_expression is defined by Equations .

The optional MessageCode is a non-negative integer, that associates the event with an EventMessage ,
188

which is printed once if that event has been triggered.

MESHFREE - InputFiles - USER_common_variables - EVENT .- EventMessage
EventMessage

event message with message code

Define an event message for a message code which can be used in EVENT statements.
EventMessage (MessageCode) = "MessageText"
Example:

EventMessage (12345) = "MESHFREE was stopped due to an event."

MESHFREE - InputFiles - USER _common_variables - Equations

3.1.13. Equations

define functions, equations, and algebraic expressions

In most positions within the USER_common_variables in the RightHandSideExpression it is possible to include user
defined equations, e.g. into boundary conditions, initial conditions, user defined variables, and many more. The equation is
then evaluated on point basis, in particular the equation is automatically evaluated for each the statement on the left hand
side concerning point. Equations can be defined and invoked in the following ways:

(explicit) Definition - UseByReference
An equation definition for a user chosen Reference Name $EquationName$ and a user chosen BodyOfEquation takes the
general form:

begin_equation{ $EquationName$ }
BodyOfEquation
end_equation

BodyOfEquation

Many of the equations are evaluated on point basis. The values of physical and organizational quantities can be accessed
by the Y-Syntax by an index from Indices

Y%index%

Example 1: kinetic energy of a MESHFREE point uses pointwise quantities

begin_equation{ $KineticEnergy$ }
0.5"Y %ind_r% *(Y %ind_v(1)% "2 + Y %ind_v(2)% "2 + Y %ind_v(3)% "2)
end_equation

The BodyOfEquation can moreover incorporate:
o _ Constants__ : Meshfree internal constants, e.g. %BND_free% can be compared to Y %ind_kob% to evaluate if a
point belongs to a free surface, see Example 2.
« Functions : refer to functions such as cos() and many more.
» Operators for comparisons or elementary calculations.

Example 2: boolean returning 1 if point is a free surface point

189

begin_equation{ $IsFreeSurface$ }

if (Y %ind_kob% = %BND_free%) :: 1
else :: 0

endif

end_equation

Referencing
These equations can be referenced by their $EquationName$ in two ways:
« directly on the RightHandSideExpression of statements by equn{$EquationName$} , see Example 3.

« within another equation definition by using the Function equn($EquationName$) , see Example 4.
« Inside a curve definition (Curves), see Example 5.

Examples (Referencing)
Example 3: Dirichlet temperature boundary condition with temperature given by the evaluation of the equation

BC_T ($wall$) = (%BND_DIRICH% , equn{ $EquationName$ })

Example 4: Referring to an equation from another equation:

begin_equation{ $AnotherEquation$ }
... equn($EquationName$) ...
end_equation

Example 5: Referring from a curve to an equation:

begin_curve{ $CurveName$ }
0 equn{ $EquationName$ }
12

3875

end_curve

Inline definition of equations

If the equation is not so complicated and only used on one location within the setup, then there is a comfortable way of
defining the equation inline by using the inline square bracket []-syntax .

Example 6

BC_T ($wall$) = (%BND_DIRICH% , [BodyOfEquation])

Equations for boundary elements

Most equations are evaluated for the pointcloud, but we also have a limited amount of functions, that can be used in the
context of boundary elements.

(e.g. for SAVE_BE_ITEM): these are all functions starting with BE* in the list of Functions .

List of members:
Functions standard math functions and MESHFREE-specific functions

Operators standard math operators

MESHFREE - InputFiles - USER_common_variables - Equations - Functions

190

Functions

standard math functions and MESHFREE-specific functions

See the list below.

List of members:

abs()

acos()
approxY()
asin()

atan()

BE_n()
BEarea()
BEgauss()
BEhasCurv()
BEincidence()
BEisOnEdge()
BEmap()
BEmaxCurv()
BEminCurv()
BEmon()

BEpos()

BEprincipalCurvatureEdg

et()

BEprincipalCurvatureEdg

e2()

BEprincipalCurvatureEdg

e3()

BEprincipalCurvatureEdg

ed()

BEprincipalCurvatureNor

mal()
BEsum()
binA()

ChkNP()

CID()

absolute value

inverse cosine

approximation of a MESHFREE-entity by the MESHFREE least squares operators

inverse sine

inverse tangent

normal with respect to a boundary element
area of a boundary element

BE local Gaussian curvature

1 if curvature computation is successful
number of incidental edges of a node point

1 if boundary node belongs to an edge

Fetch result of mapping onto boundary element
BE local maximum curvature

BE local minimum curvature

BE monitor item results

midpoint, minimum or maximum position of a boundary element

first edge of principal curvature computation

second edge of principal curvature computation

third edge of principal curvature computation

fourth edge of principal curvature computation

normal for principal curvature computation

summation over values given on boundary elements
step function for alias
check for attributes of node points of boundary elements

CuttingCurveCluster ID

191

compareY()
cos()
cosh()
cross()
curve()
deurv()
dequn()

dtBND()

DtDom()
dYdn()
dYdx()
dydy()
dYdz()
eigen()
equn()
ExDom()

exp()

fABND()

FCOG()
if-then-else
InDom()
int()

integ()
isCID()
joint()
LCOG()
lenA()
log()
log10()
max()

MCOG()

compare function values between two given chambers

cosine

hyperbolic cosine

flag if point crossed a BND_BlindAndEmpty boundary element in the current time step
incorporate curves in an equation

derivative of a given curve

derivative of a given equation

(experimental) closest distance to boundary (free surface or regular) in the neighborhood of a
MESHFREE point

distance to a given alias-domain

normal derivative of MESHFREE-entity

x-derivative of MESHFREE-entity

y-derivative of MESHFREE-entity

z-derivative of MESHFREE-entity

eigenvalues and eigenvectors of a symmetric 3x3 matrix
incorporate existing equations

check if a point is outside a closed domain

exponential

function evaluation for monitor points relative to the area of the corresponding boundary
element

integrated forces acting on the center of gravity for a given MOVE-flag

logical branching in an equation

check if a point is inside a closed domain

integer part of a real value

incorporate integration results in an equation

characteristic function for a CuttingCurveCluster

provide general information of a given rigid body being in joint/link-contact with other bodies
integrated/rotated local coordinate system of a rigid body of a given MOVE-flag
length of alias string

natural logarithm

logarithm with basis 10

maximum of two or more arguments

moment about of the center of gravity for a given MOVE-flag

192

min()
mod()
nbsum()
nrand()
ode()
omCOG()
phix()
phiy()
phiz()
pmin()
projY()
rand()
RasterCircleX

RasterCircleY

minimum of two or more arguments
modulo operation

sum over points in neighbor list

random sample from a normal distribution
incorporate results of ODE solvers

rotational speed of the center of gravity for a given MOVE-flag

minimum of all strictly positive values

projection of a MESHFREE-entity by smooth, Shepard-type approximation
random number generator

x-coordinate of a random midpoint of a raster of squares with respect to a circle
y-coordinate of a random midpoint of a raster of squares with respect to a circle

incorporate standard MESHFREE-postprocessing and statistics

MESHFREE-entity of the opposite MESHFREE point in contact problems

InputFiles - USER_common_variables - Equations - Functions - BE_n()

real()
reduct() incorporate results of PointCloudReduction operation
rot() rotated vector
sin() sine
sinh() hyperbolic sine
sodst() provide solution to sods shock tube problem
sqri() square root
step() (unit) step function
tan() tangent
tanh() hyperbolic tangent
vCOG() velocity of the center of gravity for a given MOVE-flag
xCOG() position of the center of gravity for a given MOVE-flag
Y0() MESHFREE-entity
Yopp()
MESHFREE -
BE_n()

normal with respect to a boundary element

Computes the normal of a boundary element of a fixed boundary, e.g. of a triangle.
As the function needs to return a scalar, the x-, y-, or z-component of the normal
is selected by providing 1, 2, or 3 as argument, respectively.

This is useful when used together with BEsum() in the context of MOVE statements
or within a BE_ MONITOR_ITEM or SAVE_BE_MONITOR_ITEM .

Example:

begin_equation{ $normal_x$ }
BE n(1)

end_equation
begin_equation{ $normal_y$ }
BE n(2)

end_equation
begin_equation{ $normal_z$ }
BE n(3)

end_equation

MESHFREE - InputFiles - USER common_variables - Equations - Functions - BEarea()

BEarea()
area of a boundary element

Computes the area of a boundary element of a fixed boundary, e.g. of a triangle.

This is useful when used together with BEsum() in the context of MOVE statements
or within a BE_ MONITOR_ITEM or SAVE_BE _MONITOR_ITEM .

Example:

begin_equation{ $EqunName$ }
... BEarea(1) ...
end_equation

Note: BEarea() needs a dummy argument (in the example, 1). So far, its value is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEgauss()
BEgauss()

BE local Gaussian curvature

Computes the local Gaussian curvature of a boundary element node. If the curvature cannot be computed 0 is returned.
Use BEhasCurv() to to check for success.

[... BEgauss(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEhasCurv()

BEhasCurv()

1 if curvature computation is successful
194

Returns 1 if curvature computations by BEminCurv(), BEmaxCurv(), BEgauss(), BEprincipalCurvatureEdge(),
BEprincipalCurvatureEdge2() , BEprincipalCurvatureEdge3() BEprincipalCurvatureEdge4() are successful. Otherwise 0 is
returned.

[... BEhasCurv(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEincidence()

BEincidence()
number of incidental edges of a node point

Returns the number of incidental edges of a node point.

[... BEincidence(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEisOnEdge()

BEisOnEdge()

1 if boundary node belongs to an edge

Returns 1 if the node point of a boundary element belongs to an edge. Otherwise 0 is returned.

[... BEisOnEdge(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEmap()
BEmap()

Fetch result of mapping onto boundary element

This function fetches the result of a BE_ MAP command for the current boundary element.

Example 1 : Map hydrostatic and dynamic pressure to the boundary and save both pressures as well as the total pressure
for each BE
SAVE_BE_ITEM = (%SAVE_scalar%, [BEmap($BEmap_phyd$)], "BE_BEmap_phyd")
SAVE_BE_ITEM = (%SAVE_scalar%, [BEmap($BEmap_pdyn$)], "BE_BEmap_pdyn")
SAVE_BE_ITEM = (%SAVE_scalar%, [BEmap($BEmap_phyd$) + BEmap($BEmap_pdyn$)], "BE_BEmap_ptot")
BE_MAP ($BEmap_phyd$) = ([Y %ind_p%])
BE_MAP ($BEmap_pdyn$) = ([Y %ind_p_dyn%])

Example 2 : Directly map the total pressure to the boundary and save total pressure for each BE

SAVE_BE_ITEM = (%SAVE_scalar%, [BEmap($BEmap_ptot$) |, "BE_BEmap_ptot")
BE_MAP ($BEmap_ptot$) = ([Y %ind_p% + Y %ind_p_dyn%])

195

Note: The function BEmap() should currently only be used in conjunction with SAVE_BE_ITEM

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEmaxCurv()

BEmaxCurv()

BE local maximum curvature

Computes the local maximum curvature of a boundary element node. If the curvature cannot be computed 0 is returned.
Use BEhasCurv() to to check for success.

[... BEmaxCurv(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEminCurv()

BEminCurv()

BE local minimum curvature

Computes the local minimum curvature of a boundary element node. If the curvature cannot be computed 0 is returned.
Use BEhasCurv() to to check for success.

[... BEminCurv(1) ...]

This function requires a dummy parameter which is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEmon()

BEmon()

BE monitor item results

Definition of a BE. MONITOR_ITEM :
BE_MONITOR_ITEM (n) = (%CUMU_...%, ...)

The result of this particular monitor item can be used inside of an equation by:
[...BEmon(n) ... 1]

n is the index of the monitor item.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEpos()

BEpos()

midpoint, minimum or maximum position of a boundary element

Computes the midpoint, minimum or maximum of a boundary element of a fixed boundary, e.g. of a triangle.
[... BEpos(n, s) ...]

196

n = 1,2,3; selects the x-, y-, z-component respectively
s = 0, positive value, negative value; specifies the position - midpoint, maximum or minimum respectively

This is useful when used together with INTEGRATION .

Example:

begin_equation{ $midpoint_x$ }

BEpos(1, 0)

end_equation

begin_equation{ $maximum_y$ }
BEpos(2, 1)

end_equation

begin_equation{ $minimum_z$ }
BEpos(3, -2)

end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions -
BEprincipalCurvatureE 1

BEprincipalCurvatureEdge1()
first edge of principal curvature computation

Returns the n-th coordinate component of the vector pointing along the first edge used in principal curvature computations.

[... BEprincipalCurvatureEdge1(n) ...]

n=1,2,3 the vector component

MESHFREE - InputFiles - USER _common_variables - Equations - Functions -
BEprincipalCurvatureEdge2

BEprincipalCurvatureEdge2()
second edge of principal curvature computation

Returns the n-th coordinate component of the vector pointing along the second edge used in principal curvature
computations.

[... BEprincipalCurvatureEdge2(n) ... |

n=1,2,3 the vector component

MESHFREE - InputFiles - USER_common_variables - Equations - Function
BEprincipalCurvatureEdge

BEprincipalCurvatureEdge3()
third edge of principal curvature computation

Returns the n-th coordinate component of the vector pointing along the third edge used in principal curvature
computations.

197

[... BEprincipalCurvatureEdge3(n) ... |

n=1,2,3 the vector component

MESHFREE - InputFiles - USER_common_variables - Equations - Functions -
BEprincipalCurvatureE 4

BEprincipalCurvatureEdge4()
fourth edge of principal curvature computation

Returns the n-th coordinate component of the vector pointing along the fourth edge used in principal curvature
computations.

[... BEprincipalCurvatureEdge4(n) ... |

n=1,2,3 the vector component

MESHFREE - InputFiles - USER _common_variables - Equations - Functions -
BEprincipalCurvatureNormal

BEprincipalCurvatureNormal()

normal for principal curvature computation

Returns the n-th coordinate component of the vector pointing along the normal used in principal curvature computations.

[... BEprincipalCurvatureNormal(n) ...]

n=1,2,3 the vector component

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - BEsum()
BEsum()

summation over values given on boundary elements

For a node point of a fixed boundary all neighboring boundary elements, e.g. triangles, are collected.
The equation provided as argument is evaluated on each of these neighboring boundary elements
and finally summed up.

So far, BEsum only makes sense when used on nodes of the fixed boundary, e.g. in the context of a MOVE statement.

Example:

begin_equation{ $EqunName$ }
... BEsum(eq_sum) ...
end_equation

begin_equation{ eq_sum }

end_equation

Warning: BEsum() can only have a reference to another equation. It is not possible to write down
values or any mathematical expressions directly.
198

MESHFREE - InputFiles - USER_common variables - Equations - Functions - CID()

CID()
CuttingCurveCluster ID

begin_equation{ $EqunName$ }
... CID(0) ...
end_equation

The CuttingCurveCluster ID for points on the boundary is returned. For non-boundary points the result is 0.

Note: CID() needs a dummy argument (in the example, 0). So far, its value is ignored.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - ChkNP()

ChkNP()

check for attributes of node points of boundary elements

With the help of this function different attributes of the node points of the boundary elements belonging to a given alias can
be checked.

Example:

begin_equation{ $EqunName$ }
... ChkNP("AliasName", attribute, component, type) ...
end_equation

"AliasName" specifies to which alias the boundary elements belong.

attribute specifies which attribute should be considered:
« 1 (position, X_BND)
« 2 (velocity, V_BND)
« 3 (acceleration, Vdot_ BND)

component specifies which component of the given attribute should be considered:
« 1 (x-coordinate)
« 2 (y-coordinate)
e 3 (z-coordinate)

type specifies which type of check should be done:
« 1 (average with respect to the number of node points matching the given alias)
e 2 (minimum)
o 3 (maximum)

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - DtDom()

DtDom()

distance to a given alias-domain

199

begin_equation{ $EqunName$ }
... DtDom("AliasName") ...
end_equation

MESHFREE will compute the distance of a given point to the boundary elements (BE) attached to the alias "AliasName" .

Also the orientation of the BE plays a role, such that the distance can become negative,
if the point is logically outside of the domain.

Optionally, instead of computing the distance to MESHFREE points, compute the distance to
any given coordinate:

begin_equation{ $EqunName$ }
... DtDom("AliasName", x, vy, z) ...
end_equation

The distance is computed with respect to the point (x,y, z), i.e. DiDom("AliasName") and
DtDom("AliasName", Y %ind_x(1)% , Y %Iind_x(2)% , Y %Iind_x(2)%) are equivalent.

Note: The algorithm is expensive, since MESHFREE compares the point with each BE given by "AliasName".
So, use this function with caution.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - ExDom()

ExDom()
check if a point is outside a closed domain

Returns the opposite of InDom() , i.e. 0 if inside, 1 if outside.

MESHFREE - InputFiles - USER_common variables - Equations - Functions - FCOG()

FCOG()

integrated forces acting on the center of gravity for a given MOVE-flag

[... FCOG(i, SMOVEFlag$, OPTIONAL: iWhat) ...]

« i =1,2,3 yields the x-, y-, z-component of the forces for the given $MOVEFlag$, respectively.
« SMOVEFIlag$ is directly associated to all boundary elements carrying this MOVE -flag.
« IWhat (DEFAULT=0) :
0 => sum of EXTERNAL forces (given by %MOVE_Rigid% and/or RIGIDBODY_ExternalForces) + pressure/tension
forces acting om body + gravity forces
1 => sum of pressure/tension forces + gravity forces
2 => simply sum of EXTERNAL forces
3 => pressure and tension forces

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - InDom()

InDom()
check if a point is inside a closed domain

200

begin_equation{ $EqunName$ }
... InDom("AliasName") ...
end_equation

For a MESHFREE point the InDom-check returns 1 if the point is inside the closed domain given by the
boundary elements (BE) attached to the alias "Alias name" and 0 if it is outside.

To do the InDom-check, MESHFREE sends a ray from the point. If the ray cuts an even number of times
the boundary, the point is outside, otherwise inside.

Optionally, instead of checking the MESHFREE points, any given coordinate can be checked:

begin_equation{ $EqunName$ }
... InDom("AliasName", x, y, z) ...
end_equation

The InDom-check is performed with respect to the point (x,y, z).

See also ExDom() .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - LCOG()

LCOG()
integrated/rotated local coordinate system of a rigid body of a given MOVE-flag

[... LCOG(i,j, SMOVEFlag$) ...]

i = 1,2,3; yields the x-, y-, z-component of the j-th unit vector of the given $MOVEFlag$, respectively.
j = 1,2,3; determines the indes of the local unit vector of the local coordinate system associated with the rigid body
$MOVEFlag$ movemebt flag of the rigid body.

REMARK: the original local coordinate system are the eigen vectors of the tensor of inertia to be given in the MOVE -
declaration

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - MCOG()

MCOG()

moment about of the center of gravity for a given MOVE-flag

[... MCOG(i, SMOVEFlag$, OPTIONAL: iWhat) ...]

- i =1,2,3 yields the x-, y-, z-component of the rotational speed w of the center of gravity for the given $SMOVEFlag$
, respectively.

- SMOVEFlag$ is directly associated to all boundary elements carrying this MOVE -flag.

« IWhat (DEFAULT=0) :
0 => sum of EXTERNAL moments around thexCOG() (given by %MOVE_RIigid% and/or
RIGIDBODY_ExternalForces) + moments due to pressure/tension forces acting om body
1 => sum of moments due to pressure/tension
2 => sum moments due to all EXTERNAL forces
3 => sum of moments due to pressure and tension forces (same as 1, but try to keep consistency with FCOG() .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - RasterCircleX

201

RasterCircleX
x-coordinate of a random midpoint of a raster of squares with respect to a circle

[... RasterCircleX (r1,r2) ...]

A rectangular raster of squares with edge length r1 and a circle with radius r2 are constructed.
The function returns the x-coordinate of a random midpoint of one of the squares that is fully contained in the circle.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - RasterCircleY

RasterCircleY
y-coordinate of a random midpoint of a raster of squares with respect to a circle

[... RasterCircleY (r1,r2) ...]

A rectangular raster of squares with edge length r1 and a circle with radius r2 are constructed.
The function returns the y-coordinate of a random midpoint of one of the squares that is fully contained in the circle.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - YO()

YO()
MESHFREE-entity

[... YO(%ind_NameOfEntity%, OPTIONAL: ilndex) ...]

Without optional index, this is equivalent to [... Y%ind_NameOfEntity% ...].
WITH optional index, it returns the appropriate value of the MESHFREE point with the index ilndex.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - Yopp()
Yopp()

MESHFREE-entity of the opposite MESHFREE point in contact problems

[..- Yopp(%ind_NameOfEntity%) ...]

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - abs()

abs()

absolute value

[...abs(a) ...]

Computes the absolute value of a .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - acos()

acos()
202

inverse cosine

[...acos(a) ...]

Computes the inverse cosine of a . The result is in radians.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - approxY()

approxY()
approximation of a MESHFREE-entity by the MESHFREE least squares operators

Approximation of given discrete function values by the MESHFREE least squares approximation,
i.e. MESHFREE uses the classical least-squares approximation stencil at the current (MESHFREE point) location,
or optionally at any user-provided location x , in order to provide the following approximation:

u(x) = Z(:?(x) X

J

The function approxY() , optionally, provides derivatives in the sense

3“*

u(x) = Z(J;[X) U
J

where ™' stands for x, y, or z derivatives.

See DOCUMATH_ DifferentialOperators.pdf for a complete description of the least-squares idea,
especially refer to chapter 1.

[... approxY(%ind_u% , iChamber , OPTIONAL: iOrder ,
OPTIONAL: alphaKernel,

OPTIONAL: whatToApproximate,

OPTIONAL: xApprox, yApprox, zApprox,

OPTIONAL: factor_allowed_overshoot) ...]

%ind_u% : index of the function to be approximated

iChamber : approximation in what chamber; default: the chamber index of the current MESHFREE point Y
%ind_cham%

iOrder : order of approximation (1,2,3); default : the order given in ord_gradient

alphaKernel : specify o in the kernel/weight function W’(xj,x) = exp (—a%) ; default: given by
DIFFOP_kernel_Gradient

whatToApproximate : 0 (function), 1 (x-derivative), 2 (y-derivative), 3 (z-derivative); default : 0

xApprox, yApprox, zApprox : define the location where to do the approximation; default: location of current
MESHFREE point (Y %ind_x(1)% , Y %ind_x(2)% , Y %ind_x(3)%)

factor_allowed_overshoot : activate and define the factor a: for the allowed overshoot of the approximation: 0 (no
limit for overshoot), () <¢ & < 1 (internally programmed values), o = 1 (user defined factor); default : 0

Further remarks:

DIFFOP_Version triggers the approximation method
The smoohting length / interaction radius h(xj) is used from the appropriate SmoothingLength defintions set forth
to chamber iChamber

Important Remark : given an approximation task in iChamber at the location & , then MESHFREE will search for

the closest neighbor point at location x; in iChamber. The neighbors for the approximation task around @&

will be executed using the neighbor list of @; . Thus, the choice of the parameter NEIGHBOR_FilterMethod

will have a big impact on the results of the approximation. We remember that, using NEIGHBOR_FilterMethod > 1, we
prevent the

neighbor search from "looking through" thin walls.

203

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/DifferentialOperators/DOCUMATH_DifferentialOperators.pdf

Experts only : Two-digit mode for iOrder :
Instead of specifying a single digit for iOrder , there is the option to specify a two digit parameter that controls which
points are considered for the approximation:

Approximation Approximation Approximation

Order 1 Order 2 Order 3

interior and free surface particles (Y%ind_kob%=%BND_none%

or Y%ind_kob%=%BND_free%) R 12 13
use only regular boundary particles (without free surface) 21 22 23
use only interior particles (Y%ind_kob%=%BND_none%) 31 32 33
use only boundary particles (including free surfaces) 41 42 43

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - asin()

asin()
inverse sine

[...asin(@) ...]

Computes the inverse sine of a . The result is in radians.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - atan()

atan()
inverse tangent

[...atan(a) ...]

Computes the inverse tangent of a . The result is in radians.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - binA()

binA()

step function for alias

The binA() function offers different options for retrieving alias related quantities on the pointcloud and the boundary
elements.
« for a point of the pointcloud: evaluating if the boundary element of the MESHFREE point corresponds to a given
alias or alias wildcard expression.
« for a point of the pointcloud: retrieving the ALIAS -index of the boundary element the MESHFREE point belongs to.
« for a boundary element: retrieving the ALIAS -index.

Evaluation on Alias Name
Syntax:
[... binA("AliasName") ...]

The result of the evaluation is:
204

« 1, if the alias to the boundary element corresponding to MESHFREE point is the "AliasName"
« 0, if the alias to the boundary element corresponding to MESHFREE point is not the "AliasName"

Example: "AliasName" can also be a wildcard expression: The expression

[... binA("D*") ...]

will return 1 for all aliasses matching the wildcard expression "b*". So aliasses "bottom" or "box" will be matched, but the
alias "top" will not.

Alias Index to point

The construct

[... iNA(O) ...]

will deliver the ALIAS -index of the boundary element, the MESHFREE point belongs to.
Alias Index to boundary element

The construct

[... biNA(-IBE) ...]

will deliver the alias index of the boundary element with the index iBE.
HINT: if the point is a boundary point, then binA(0) and binA(-Y %ind_BE1%) would result in the same value

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - compareY()

compareY()
compare function values between two given chambers

begin_equation{ $EqunName$ }
... compareY(%ind_{%, iChamber1, iChamber2) ...
end_equation

The function values represented by MESHFREE -index %ind_f% (see Indices) are compared between
the two chambers iChamber1 and iChamber2 , i.e. the difference Y(%ind_f%,iChamber1) - Y(%ind_{%,iChamber2) is
computed.

The chamber indices have to correspond to defined CHAMBER -flags.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - cos()

cos()
cosine

[...cos(a) ...]

Computes the cosine of a given in radians.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - cosh()

cosh()
hyperbolic cosine

205

[...cosh(a) ...]

Computes the hyperbolic cosine of a .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - cross()

cross()
flag if point crossed a BND_BlindAndEmpty boundary element in the current time step

[... cross($PP_BlindAndEmpty_ID$) ...]

This function determines whether a MESHFREE point has crossed a %BND_BlindAndEmpty% -boundary element with
POSTPROCESS -flag $PP_BlindAndEmpty_ID$ in the current time step.

Possible return values (per MESHFREE point):
« +1 if MESHFREE point has crossed from the inside to the outside
« 0 if MESHFREE point has not crossed
- -1 if MESHFREE point has crossed from the outside to the inside

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - curve()

curve()
incorporate curves in an equation

Definition of a curve (see Curves):

begin_curve{ $CrvName$ }, depvar_default{ %ind_Var%}
BodyOfCurve
end_curve

The result of this curve is used in an equation/arithmetic expression by:

[... curve($CrvName$) ...]

If the depvar_default{ }-information for the curve is not set, then the independent variable will be the simulation time. See
also 1D_Curves .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dYdn()

dYdn()
normal derivative of MESHFREE-entity

derivative in the direction of the boundary normal by the actually installed (local) differential operators
[... dYdn(%ind_NameOfEntity%) ...]

Note: The normal derivative is only valid for boundary points.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dYdx()

206

dYdx()
x-derivative of MESHFREE-entity

x-derivative by the actually installed (local) differential operators
[... dYdx(%ind_NameOfEntity%) ...]

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dYdy()
dYdy()
y-derivative of MESHFREE-entity
y-derivative by the actually installed (local) differential operators
[... dYdy(%ind_NameOfEntity%) ...]
MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dYdz()
dYdz()
z-derivative of MESHFREE-entity
z-derivative by the actually installed (local) differential operators
[... dYdz(%ind_NameOfEntity%) ...]
MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dcurv()
dcurv()
derivative of a given curve
This function numerically computes the derivative of a curve by a central difference.
The numerical differentiation is performed with respect to the depvar_default -variable:
begin_equation{ $EqunName$ }
... deurv($CurveName$, ind_MFvariable, OPTIONAL:SizeOfInterval) ...
end_equation
begin_curve{ $CurveName$ }, depvar_default {...}
end_curve
ind_MFvariable: If a positive value for ind_MFvariable is given (i.e. an item out of Indices),
then the curve is numerically derived with respect to this variable. The standard case, however, is
to set ind_MFvariable = -1. In this case, the curve is derived with respect to the default variable
which is given in the depvar_default{ }-clause.
SizeOfInterval specifies the half-width of the central difference. The default value is 1.0e-4.
MESHFREE - InputFiles - USER_common_variables - Equations - Functions - dequn()

dequn()

derivative of a given equation

207

This function numerically computes the derivative of an equation by a central difference.
The numerical differentiation is performed with respect to a given MESHFREE -variable %ind_MFvariable% :

begin_equation{ $EqunName$ }

... dequn($OtherEqunName$, %ind_MFvariable%, OPTIONAL:SizeOflInterval) ...
end_equation

begin_equation{ $OtherEqunName$ }

end_equation

SizeOfInterval specifies the half-width of the central difference. The default value is 1.0e-4.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - diBND()

dtBND()

(experimental) closest distance to boundary (free surface or regular) in the neighborhood of a MESHFREE point

Experimental only!

begin_equation{ $EqunName$ }
... dtBND(iArg) ...
end_equation

The distance is computed using a least-squares approximation of the distance functional:
« Points at the boundary have distance 0 and a gradient of 1 pointing in normal direction.
« Points in the interior are ignored for versions 0 and 1 (see below).

iArg:
« 0 (distance to free surface)
« 1 (distance to regular boundary based on boundary points only)
2 (distance to regular boundary based on %ind_dtb% -information)

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - eigen()

eigen()
eigenvalues and eigenvectors of a symmetric 3x3 matrix

Produces the eigenvalues and eigenvectors of a symmetric 3x3 matrix.

Syntax:
[... eigen(M11, M22, M33, M12, M13, M23, ilndex) ...]

where:

« M11, M22, M33 :: the diagonal elements of the matrix to be considered

« M12, M13, M23 :: the off-diagonal elements of the matrix to be considered (as the matrix is assumed to be
symmetric, no need to provide M21, M31, M32.)

« ilndex :: integer between 1 and 12 specifying the component to be returned, see below table.

208

ilndex returned component

-1 first eigenvalue

1,2,3 x,y,z-components of the correspondig first eigenvector

-2 second eigenvalue

4,5,6 x,y,z-components of the correspondig second eigenvector
-3 third eigenvalue

7,8,9 x,y,z-components of the correspondig third eigenvector

Good to know:

« The functions in the equation parser generally provide only a scalar real number . As the eigen() function provides

multiple return parameters, it has to be specified by ilndex, which one is required.

« There is a caching mode such that subsequent calls to this function will only recompute the eigenvalues and -

vectors if required.

« If multiple eigen() -calls for the multiple matrices are present, then there are two possible strategies for performance
optimization: the user can either order the equations appropriately to invoke the caching mode or store the

computed values as intermediate result in UserDefinedIndices %indU_...% .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions -

equn()

incorporate existing equations

Definition of an equation (see Equations):

begin_equation{ $EqnName$ }
BodyOfEquation
end_equation

The result of this equation is used in another equation/arithmetic expression by:

[...equn($EqnName$) ...]

MESHFREE - InputFiles - USER _common_variables - Equations - Functions -

exp()

exponential

[...exp() ...]

Computes exp(a) = e”.

MESHFREE - InputFiles - USER_common_variables - Equations - Function
fABND()

function evaluation for monitor points relative to the area of the corresponding boundary element

fABND()

209

[... ABND(%ind_f%) ...]

In case of MONITORPOINTS perform the evaluation of a MESHFREE -index %ind_{% (see Indices) relative to the area
of the boundary element, which the respective monitor point is attached to, in the following sense:

fABND(f) = '
(f) Z?:'Esmt)nit()r A% J

where S, onitor denotes the set of all monitor points attached to the same boundary element.

The area of the monitor points 4; is determined by

A
Ai — tBE :
npiBE

where A;gg is the area of the boundary element monitor point i is attached to and
np;RE is the total number of monitor points attached to this boundary element.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - if-then-else

if-then-else
logical branching in an equation

begin_equation{ abs }
if(aaa) :: mathexpression1i
elseif(bbb) :: mathexpression2
elseif(ccc) :: mathexpression3
else :: mathexpression4

endif

end_equation

The logical expressions aaa , bbb , ccc can be established using the logical operators ">", "Example: condition for the x-
component of the point position

begin_equation{ abs }

if (Y %ind_x(1)% > 0) :: mathexpression1

elseif (Y %ind_x(1)% > -0.5) :: mathexpression2
else :: mathexpression3

endif

end_equation

Also nesting is allowed:

210

begin_equation{ abs }
if(aaa) :

if(ddd) :: mathexpression1
else :: mathexpression2

endif

elseif(bbb) :: mathexpression3
elseif(cce) :: mathexpression4
else :

if(ddd) :: mathexpression5
else :: mathexpression6

endif

endif

end_equation

MESHFREE - InputFiles - USER_common_variables -

Equations - Functions - int()

int()
integer part of a real value

begin_equation{ $EqunName$ }
... int(a) ...
end_equation

Computes the integer part of a .

MESHFREE - InputFiles - USER_common_variables -

integ()

incorporate integration results in an equation

Definition of an INTEGRATION :
INTEGRATION ($Intind$) = (%INTEGRATION _...%,)

The result of this integration can be used inside of an equation by:
[...integ($Intind$) ...]

$Intind$ is the corresponding soft variable of the integration.

MESHFREE - InputFiles - USER_common_variables -

isCID()

characteristic function for a CuttingCurveCluster

begin_equation{ $EqunName$ }
... isCID(index_CCQC) ...
end_equation

Equations - Functions - integ()

Equations - Functions - isCID()

For all MESHFREE points on part of the boundary with CuttingCurveCluster ID index_CCC 1 is returned, 0 elsewhere.

211

MESHFREE - InputFiles - USER _common variables - Equations - Functions - joint()

joint()
provide general information of a given rigid body being in joint/link-contact with other bodies

begin_equation{ $EqunName$ }
... joint(iJNT, iltem, iIMOVE) ...
end_equation

« iJNT : then index of the joint/link between the rigid body and another body. There might be several, the number of
which should be known to the user.

- iltem : what item to provide by this function; it can be on of the follwoing

o %EQN_JOINT_x(1)% : x-position of the joint/link

%EQN_JOINT_x(2)% : y-position of the joint/link

%EQN_JOINT_x(3)% : z-position of the joint/link
%EQN_JOINT_F(1)% : x-component of force acting on the joint
%EQN_JOINT_F(2)% : y-component of force acting on the joint
%EQN_JOINT_F(3)% : z-component of force acting on the joint
%EQN_JOINT_M(1)% : x-component of moment acting on the joint
%EQN_JOINT_M(2)% : y-component of moment acting on the joint
o %EQN_JOINT_M(3)% : z-component of moment acting on the joint

o

o

o

o

o

o

o

- iIMOVE : move flag of the rigid body, i.e. the $moveName$ given in the MOVE ($moveName$) = (%MOVE_rigid% ,
...) statement

Example

begin_timestepfile{ "myfile.timestep"}

INTEGRATION (1) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)], %INTEGRATION_Header%, "time")
INTEGRATION (2) = (%PUBLICVALUE% , [joint(1, %EQN_JOINT_x(1)% , $SMOVE_RB1$)],
%INTEGRATION_Header% , "location of joint")

INTEGRATION (3) = (%PUBLICVALUE% , [joint(1, %EQN_JOINT_F(1)% , $SMOVE_RB1$)],
%INTEGRATION_Header% , "force at of joint")

end_timestepfile

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - lenA()

lenA()
length of alias string

[... lenA("AliasName") ...]

Determines the length of the given alias "AliasName". If "AliasName" ="", 0 is returned.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - log()

log()
natural logarithm
[...log(@) ...]

Computes the natural logarithm of a .

212

MESHFREE - InputFiles - USER_common_variables -

log10()
logarithm with basis 10

[...log10(a) ...]

Computes the base 10 logarithm of a .

MESHFREE - InputFiles - USER_common_variables -

max()
maximum of two or more arguments

[... max(argl, arg2, ..., argn) ...]

Computes the maximum of arg1 , arg2, ..., argn .

MESHFREE - InputFiles - USER_common_variables -

min()
minimum of two or more arguments

[... min(argl, arg2, ..., argn) ...]

Computes the minimum of arg1 , arg2, ..., argn .

MESHFREE - InputFiles - USER_common_variables -

mod()

modulo operation

Equations -

Equations -

Equations -

Equations -

examples: mod(A,P)=A-FLOOR(A/P)*P , i.e. 1=mod(7,6), 6=mod(6,7), 0=mod(6,2)

MESHFREE - InputFiles - USER_common_variables -

nbsum()
sum over points in neighbor list

Equations -

Functions - log10()
Functions - max()
Functions - min()
Functions - mod()
Functions - nbsum()

Sum up the values of a single index over all points in the neighbor list which have the same chamber, including the center

point.

Syntax example:
[... nbsum(%ind_Vi%) ...]

Note:

By default, sums in DROPLETPHASE chambers are based on the full neighbor list of geometrical neighbor points, not the
reduced one which is used in the stencil calculation and which is limited by max_N_stencil . On the other hand, in any
other chamber, the "filtered" lists are used. To overwrite these defaults, one can specify the following constants as a

213

second argument:
« %EQN_nbsum_filtered%
%EQN_nbsum_nonfiltered%

Syntax example:
[... nbsum(%ind_Vi% , %EQN_nbsum_filtered%) ...]

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - nrand()

nrand()

random sample from a normal distribution

Produces a random sample from a normal distribution with mean mue and standard deviation sigma. Syntax:

[... nrand(mue, sigma) ...]

Remark: Both arguments must be provided.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - ode()

ode()

incorporate results of ODE solvers
Definition of ODE :

ODE (n) = (A, B, Q, Finit)

The result of the ODE solver can be used inside of an equation by:

begin_equation{ $EqunName$ }
... ode(n) ...
end_equation

n is the index of the ODE .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - omCOG()

omCOG()

rotational speed of the center of gravity for a given MOVE-flag

[...omCOG(i, SMOVEFlag$) ...]

i = 1,2,3 yields the x-, y-, z-component of the rotational speed w of the center of gravity for the given SMOVEFlag$,
respectively.

$MOVEFlag$ is directly associated to all boundary elements carrying this MOVE -flag.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - pmin

pmin()

214

minimum of all strictly positive values

The algorithm selects all strictly positive numbers and forms their minimum.

Example:

begin_equation{ $EqunName$ }
pmin(-0.0001, 10, -5, 0.1, -80, 6, ...)
end_equation

The result is 0.1.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - projY

projY()
projection of a MESHFREE-entity by smooth, Shepard-type approximation

The projection of a MESHFREE -entity is done by a smooth, least-squares approximation of Shepard-type. Depending on
the

given parameters, the projection is done from a different chamber, only for specific types of points,

or with a specific kernel. The MESHFREE -used least squares approximation naturaly fall back to the Shepard

apprximation if order 1 is chosen. The explicit formulation is
N(x)
Wi(x;,x) - u(x;)

i(x) = —2

N(x)

> Wix;,x)
J

L 2
with Wi(x;,x) = ex —QM where X; are the neighbors and h{x ;) the smoothing length
i P (%, j

The basic projection of the MESHFREE -entity %ind_Entity% (see Indices) is invoked as:
[... projY(%ind_Entity%) ...]

The values of an entity from a different chamber with chamber index iChamber can be projected by:
[... projY(iChamber, %ind_Entity%, OPTIONAL:WhatPointsShouldBeUsed , alphaKernel) ...]

WhatPointsShouldBeUsed :
« %EQN_Proj_INT% (force the projection using only interior points)
e %EQN_Proj_ BND% (force the projection using only boundary points)
e %EQN_Proj_ ALL% (force the projection using all types of points, i.e. interior and boundary points)

The default is %6EQN_Proj ALL% .
alphaKernel : This option control the weight function by setting the parameter e (see above)

General Remark : given a projection task in iChamber at the location & , then MESHFREE will search for

the closest neighbor point at location x; in iChamber. The neighbors for the projection task around @

will be executed using the neighbor list of @; . Thus, the choice of the parameter NEIGHBOR_FilterMethod

will have a big impact on the results of the projection. We remember that, using NEIGHBOR_FilterMethod > 1, we prevent
the

neighbor search from "looking through" thin walls.

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - rand()

215

rand()

random number generator

[... rand(a, OPTIONAL: iReproducible) ...]

Options fora :
« a =1 (this will produce a random number between 0 and 1)
- ais a positive real number (this will produce a random number between 0 and a)
« ais a negative real number (this will produce a random number between a and -a)

Optional parameter iReproducible :

iReproducible has to be an integer number > 0. This allows to generate reproducible random numbers, so rand(a,15508)

will always represent the
same random number, no matter where and when applied (provided that a is the same in all cases).
This function can be helpful to generate random droplet sources in planes or similar tasks.

The following example shows how to setup random droplets create along a plane inclined in y-z-direction

R

set up the droplet source

R

begin_equation{ "iDroplet"} # this equation returns the unique counter of the next droplet

real(%DropletSource_provideCounter% , 1) + 1 # add one as the counter actuially provides the droplet index of the
provious droplet created

end_equation

DropletSource (1) = (0.05, [(1.7* &HmIin&)*3], [rand(-1)*2], [0.7357+rand(1,equn($iDroplet$))*0.85028], [3.9705-
rand(1,equn($iDroplet$))*2.55923], 1, $Mat1$) # was y=0.9

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real()

real()
incorporate standard MESHFREE-postprocessing and statistics

Real function in MESHFREE -equations with either one or two arguments:

[... real(%MESHFREE_Variable%) ...]
[... real(%MESHFREE_Variable%, Argument) ...]

For details see below.

List of members:

OneArgument real function in MESHFREE-equations with ONE parameter/argument
TwoArguments real function in MESHFREE-equations with TWO parameters/arguments
MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument

OneArgument
real function in MESHFREE-equations with ONE parameter/argument

216

begin_equation{ $Name$}
real(%MF_Variable%)
end_equation

The options for %MF_Variable% are listed below.

List of members:
%BND_count_ BE%
%BND_count_NP%

%CLOCK_STATISTICS_TOTAL_
FLIQUID%

%CLOCK_STATISTICS_TOTAL _
ORGANIZE%

%CLOCK_STATISTICS_TOTAL_
SAMG%

%CPU_STATISTICS_TOTAL_FLI
QUID%

%CPU_STATISTICS_TOTAL_OR
GANIZE%

Y%ElapsedTimelntegrationCycle%

%ElapsedTimePointOrganization
%

%FLIQUID_NbParticles%
%MEM_STATISTICS_ALLOC%
%MEM_STATISTICS_AVAIL%

%MEMORIZEDelete_NbParticles
Y%

%MEMORIZEKeep_NbParticles%

%MONITOR_NbParticles%
%MPI_NbProcesses%
%NumberTimeStepsExecuted%
%OMP_NbProcesses%
%ORGANIZE_NbParticles%
%RealTimeSimulation%
%SAVE_FreeUnit%
%SAVE_FreeUnit100%

% TIME_InitTime%

current number of boundary elements belonging to the geometry
current number of node points belonging to the geometry

CLOCK time summed over all MESHFREE points and the entire simulation time of
the (pure) MESHFREE numerics

CLOCK time summed over all MESHFREE points and the entire simulation time of
the MESHFREE organization

CLOCK time for SAMG (BETA! USE WITH CAUTION!)

CPU time summed over all MESHFREE points and the entire simulation time of the
(pure) MESHFREE numerics

CPU time summed over all MESHFREE points and the entire simulation time of the
MESHFREE organization

elapsed CPU time for (pure) MESHFREE numerics

elapsed CPU time for MESHFREE organization

current number of ACTIVE MESHFREE points
currently allocated memory of the node with the highest workload
currently available memory per node

current number of MESHFREE points that are deleted due to MEMORIZE_Write
statements

current number of MESHFREE points that are kept due to MEMORIZE_Write
statements

current number of MESHFREE monitor points

current number of MPI processes

current number of time steps executed in general

current number of openMP threads

current number of ALL MESHFREE points (inactive + active)
real simulation time

minimum number of available file units

minimum number of available file units between 111 and 1000

startup and initialization time in seconds

217

%TIME_StartTime% timestamp at startup of MESHFREE

%TIME_StepStartTime% timestamp at start of current time step
%TIME_StepWallTime% walltime of current time step in seconds
%TIME_WallTime% walltime in seconds

%VMEM_STATISTICS _ALLOC% currently allocated virtual memory

%VMEM_STATISTICS_AVAIL% currently available virtual memory

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %BND_count BE%

%BND count BE%

current number of boundary elements belonging to the geometry

Example:

begin_equation{ $boundary_elements$ }
real(%BND_count_BE%)
end_equation

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -

OneArgument - %BND_count NP%

%BND_count_NP%
current number of node points belonging to the geometry

Example:

begin_equation{ $node_points$ }
real(%BND_count_NP%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %CLOCK_STATISTICS TOTAL_FLIQUID%

%CLOCK_STATISTICS TOTAL_FLIQUID%
CLOCK time summed over all MESHFREE points and the entire simulation time of the (pure) MESHFREE numerics

Example:

begin_equation{ $clock_total_fliquid$ }
real(%CLOCK_STATISTICS_TOTAL_FLIQUID%)
end_equation

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
OneArgument - %CLOCK_STATISTICS TOTAL_ORGANIZE%

%CLOCK_STATISTICS TOTAL _ORGANIZE%
CLOCK time summed over all MESHFREE points and the entire simulation time of the MESHFREE organization

218

Example:

begin_equation{ $clock_total _organize$ }
real(%CLOCK_STATISTICS_TOTAL_ORGANIZE%)

end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %CLOCK STATISTICS TOTAL _SAMG%

%CLOCK_STATISTICS_TOTAL_SAMG%
CLOCK time for SAMG (BETA! USE WITH CAUTION!)

Example:

begin_equation{ $clock_total_samg$ }
real(%CLOCK_STATISTICS_TOTAL_SAMG%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %CPU_STATISTICS TOTAL FLIQUID%

%CPU_STATISTICS_TOTAL_FLIQUID%
CPU time summed over all MESHFREE points and the entire simulation time of the (pure) MESHFREE numerics

Example:

begin_equation{ $cpu_total_fliquid$ }
real(%CPU_STATISTICS_TOTAL_FLIQUID%)
end_equation

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
OneArgument - %CPU_STATISTICS _TOTAL_ORGANIZE%

%CPU_STATISTICS _TOTAL_ORGANIZE%
CPU time summed over all MESHFREE points and the entire simulation time of the MESHFREE organization

Example:

begin_equation{ $cpu_total_organize$ }
real(%CPU_STATISTICS_TOTAL_ORGANIZE%)
end_equation

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
OneArgument - %ElapsedTimelntegrationCycle%

%ElapsedTimelntegrationCycle%
elapsed CPU time for (pure) MESHFREE numerics

Example:

219

begin_equation{ $time_numerics$ }
real(%ElapsedTimelntegrationCycle%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument - %El TimePointOrganization%

%ElapsedTimePointOrganization%
elapsed CPU time for MESHFREE organization

Example:

begin_equation{ $time_organize$ }
real(%ElapsedTimePointOrganization%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %FLIQUID NbParticles%

%FLIQUID NbParticles%
current number of ACTIVE MESHFREE points

Example:

begin_equation{ $points_FLIQUIDS }
real(%FLIQUID_NbParticles%)
end_equation

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
OneArgument - %MEMORIZEDelete_NbParticles%

%MEMORIZEDelete_NbParticles%
current number of MESHFREE points that are deleted due to MEMORIZE_Write statements

Example:
INTEGRATION ($Int. MEMORIZEDelete$) = (%PUBLICVALUE% , real(%MEMORIZEDelete NbParticles%))

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
OneArgument - %MEMORIZEKeep NbParticles%

%MEMORIZEKeep_NbParticles%
current number of MESHFREE points that are kept due to MEMORIZE _Write statements

Example:
INTEGRATION ($Int_ MEMORIZEKeep$) = (%PUBLICVALUE% , real(%MEMORIZEKeep_NbParticles%))

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %MEM_STATISTICS_ALLOC%

220

%MEM_STATISTICS ALLOC%
currently allocated memory of the node with the highest workload

Example:

begin_equation{ $alloc_mem$ }
real(%o MEM_STATISTICS_ALLOC%)

end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %MEM_STATISTICS_AVAIL%

%MEM_STATISTICS_AVAIL%

currently available memory per node

Example:

begin_equation{ $avail_mem$ }
real(%MEM_STATISTICS_AVAIL%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %MONITOR_NbParticles%

%MONITOR_NbParticles%
current number of MESHFREE monitor points

Example:

begin_equation{ $points_monitor$ }
real(%MONITOR_NbParticles%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %MPI_NbProcesses%

%MPI_NbProcesses%
current number of MPI processes

Example:

begin_equation{ mpi_procs }
real(%MPI_NbProcesses%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %NumberTimeStepsExecuted%

%NumberTimeStepsExecuted%
current number of time steps executed in general

Example:

Equations -

Equations -

Equations -

Functions -

Functions -

Functions -

real() -

real() -

real() -

221

begin_equation{ nb_time_steps }
real(%NumberTimeStepsExecuted%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

Equations -

Functions -

real() -

OneArgument - %OMP_NbProcesses%

%OMP_NbProcesses%
current number of openMP threads

Example:

begin_equation{ $omp_threads$ }
real(%OMP_NbProcesses%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %ORGANIZE_NbParticles%

%O0ORGANIZE_NbParticles%
current number of ALL MESHFREE points (inactive + active)

Example:
begin_equation{ $points. ORGANIZES }
real(%ORGANIZE_NbParticles%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %RealTimeSimulation%

%RealTimeSimulation%

real simulation time

Example:

begin_equation{ $simulation_time$ }
real(%RealTimeSimulation%)
end_equation

MESHFREE - InputFiles - USER_common_variables -

OneArgument - %SAVE_FreeUnit%

%SAVE_FreeUnit%
minimum number of available file units

Example:

begin_equation{ $free_units$ }
real(%SAVE_FreeUnit%)
end_equation

Equations -

Equations -

Functions -

Functions -

real() -

real() -

222

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %SAVE_FreeUnit100%

%SAVE_FreeUnit100%

minimum number of available file units between 111 and 1000

Example:

begin_equation{ $free_units100$ }
real(%SAVE_FreeUnit100%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %TIME_InitTime%

%TIME_InitTime%

startup and initialization time in seconds

Time in seconds from TIME_StartTime until right before ADMIN_TIME_INTEG. a# #b
Example:

begin_equation{ $init_time$ }
real(% TIME_nitTime%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %TIME_StartTime%

%TIME_StartTime%
timestamp at startup of MESHFREE

Time in seconds from 1. January 1970 12:00 am (midnight GMT). a# #b
Example:

begin_equation{ $start_time$ }

real(% TIME_StartTime%)

end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
OneArgument - %TIME_StepStartTime%

%TIME_StepStartTime%

timestamp at start of current time step

Time in seconds from 1. January 1970 12:00 am (midnight GMT). a# #b
Example:

begin_equation{ $step_start_time$ }
real(% TIME_StepStartTime%)
end_equation

223

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument - %TIME_StepWallTime%

%TIME_StepWallTime%
walltime of current time step in seconds

Time the software is running from TIME_StepStartTime given in seconds. a# #b
Example:

begin_equation{ $step_wall_time$ }

real(% TIME_StepWallTime%)

end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument - %TIME_WallTime%

%TIME_WallTime%

walltime in seconds

Time the software is running from TIME_StartTime given in seconds. a# #b
Example:

begin_equation{ $wall_time$ }

real(% TIME_WallTime%)

end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument - %VMEM_STATISTICS ALLOC%
%VMEM_STATISTICS_ALLOC%

currently allocated virtual memory

Example:

begin_equation{ $alloc_vmem$ }
real(%VMEM_STATISTICS_ALLOC%)
end_equation

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -

OneArgument - %VMEM_STATISTICS_AVAIL%

%VMEM_STATISTICS_AVAIL%

currently available virtual memory

Example:

begin_equation{ $avail_vmem$ }
real(%VMEM_STATISTICS_AVAIL%)
end_equation

MESHFREE - InputFiles - USER common variables - Equations - Functions - real() -
TwoArguments

224

TwoArguments

real function in MESHFREE-equations with TWO parameters/arguments

begin_equation{ $Name$}

real(%MF_Variable%, Argument)

end_equation

The options for %MF_Variable% are listed below including details on the parameter Argument.

List of members:

%PUBLICVALUE_xValueOf
BNDpoint%

%PUBLICVALUE_yValueOf
BNDpoint%

%PUBLICVALUE_zValueOf
BNDpoint%

%CPU_STATISTICS_FLIQU
ID%

%CLOCK_STATISTICS_FLI
QUID%

%CPU_STATISTICS_ORGA
NIZE%

%CLOCK_STATISTICS_OR
GANIZE%

%FPM_VOLUME_TARGET
%

%FPM_VOLUME_ACTUAL
%

%FPM_VOLUME_DeletedAt
Metaplanes%

%FPM_RepMass_CreatedB
yInflowOutflow%

%FPM_RepMass_DeletedAt
Metaplanes%

%FPM_RepMass_CreatedB
yDropletSource%

%FPM_KineticEnergy_Differ
encelnOrganize%

%FPM_KineticEnergy_Differ
encelnOrganize2%

%FPM_KineticEnergy_Differ
encelnTimeStep%

x-coordinate of a BND_point carrying a certain POSTROCESS-flag

y-coordinate of a BND_point carrying a certain POSTROCESS-flag

z-coordinate of a BND_point which carries a certain POSTROCESS-flag

CPU time measured for the execution of the (pure) MESHFREE numerics at the current
time step

CLOCK time measured for the execution of the (pure) MESHFREE numerics at the current
time step

CPU time measured for the execution of the MESHFREE organization (point cloud
management, geometry operations) at the current time step

CLOCK time measured for the execution of the MESHFREE organization (point cloud
management, geometry operations) at the current time step

target value of volume in a given chamber

actual value of volume in a given chamber

volume reduced by deletion of MESHFREE points at metaplanes AND by EVENT
statements in the current time step

representative mass created by flow through %BND_inflow% and %BND_outflow%
boundaries

representative mass reduced by deletion of MESHFREE points at metaplanes and EVENT-
cuts

representative mass created by the droplet sources in a chamber or material

change of kinetic energy in some chamber during MESHFREE organization

change of kinetic energy in some chamber during MESHFREE organization at the end of

the time step

change of kinetic energy in some chamber during (pure) MESHFREE numerics

225

%FPM_KineticEnergy% total kinetic energy of a given chamber

%FPM_KineticEnergy Defec first order defect of kinetic energy during time integration due to pressure
t_gradPv%

%FPM_KineticEnergy Defec first order defect of kinetic energy during time integration due to gravity
t_rhogDv%

%FPM_KineticEnergy Defec second order defect of kinetic energy during time integration
t_ 02%

%DropletSource provideCou current status of the droplet counter of a given/defined DropletSource
nter%

%DropletSource_provideTar current status of the target volume of a given/defined DropletSource
getVolume%

%DropletSource _provideCur current status of the actually injected volume by a given/defined DropletSource
rentVolume%

%SurfaceTriangulation_NbSt number of triangles/tetras established by free surface Delaunay triangulation
encil%

%BUBBLE_EQN_TruePress true bubble pressure for given bubble index
ure%

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
TwoArguments - %BUBBLE_EQN_TruePressure%

%BUBBLE_EQN_TruePressure%
true bubble pressure for given bubble index

If the BubbleAlgorithm is switched on, the bubbles are tracked, and different ways of bubble pressure computation are
used. The true pressure concept ist the original one and explained in BubbleTruePressure . Interrogate the true pressure
of a given bubble index by

[... real(%BUBBLE_EQN_TruePressure% , iArgument) ...]

iArgument is the index of the bubble under consideration, see %ind_bndBubble% .

Example:

[... real(%BUBBLE_EQN_TruePressure% , Y %ind_bndBubble%) ...]

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real()
TwoArguments - %CLOCK_STATISTICS FLIQUID%

%CLOCK_STATISTICS_FLIQUID%

CLOCK time measured for the execution of the (pure) MESHFREE numerics at the current time step

The CLOCK time for the execution of the pure MESHFREE numerics (no MESHFREE organization) is measured at the
current time step.

[... real(%CLOCK_STATISTICS_FLIQUID% , Argument) ...]

Argument:
« 1 (per MESHFREE point average CLOCK time over all MPI processes)
e 2 (number of MPI processes times MINIMUM CLOCK time elapsed at some MPI process, divided by the global

226

number of MESHFREE points)

« 3 (number of MPI processes times MAXIMUM CLOCK time elapsed at some MPI process, divided by the global
number of MESHFREE points)

« 4 (summation of CLOCK time over all MPI processes)

« 5 (number of MPI processes times MINIMUM CLOCK time elapsed at some MPI process)

« 6 (number of MPI processes times MAXIMUM CLOCK time elapsed at some MPI process)

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %CLOCK_STATISTICS ORGANIZE%

%CLOCK_STATISTICS_ORGANIZE%

CLOCK time measured for the execution of the MESHFREE organization (point cloud management, geometry operations)
at the current time step

The CLOCK time for the execution of the MESHFREE organization (no pure MESHFREE numerics) is measured at the
current time step.

[... real(%CLOCK_STATISTICS _ORGANIZE% , Argument) ...]

Argument:

« 1 (per MESHFREE point average CLOCK time over all MPI processes)

e 2 (number of MPI processes times MINIMUM CLOCK time elapsed at some MPI process, divided by the global
number of MESHFREE points)

« 3 (number of MPI processes times MAXIMUM CLOCK time elapsed at some MPI process, divided by the global
number of MESHFREE points)

« 4 (summation of CLOCK time over all MPI processes)

« 5 (number of MPI processes times MINIMUM CLOCK time elapsed at some MPI process)

« 6 (number of MPI processes times MAXIMUM CLOCK time elapsed at some MPI process)

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %CPU_STATISTICS FLIQUID%

%CPU_STATISTICS_FLIQUID%

CPU time measured for the execution of the (pure) MESHFREE numerics at the current time step

The CPU time for the execution of the pure MESHFREE numerics (no MESHFREE organization) is measured at the
current time step.

[... real(%CPU_STATISTICS_FLIQUID% , Argument) ...]

Argument:

« 1 (per MESHFREE point average CPU time over all MPI processes)

« 2 (number of MPI processes times MINIMUM CPU time elapsed at some MPI process, divided by the global number
of MESHFREE points)

« 3 (number of MPI processes times MAXIMUM CPU time elapsed at some MPI process, divided by the global
number of MESHFREE points)

« 4 (summation of CPU time over all MPI processes)

« 5 (number of MPI processes times MINIMUM CPU time elapsed at some MPI process)

« 6 (number of MPI processes times MAXIMUM CPU time elapsed at some MPI process)

MESHFREE - InputFiles - USER _common variables - Equations - Functions - real() -
TwoArguments - %CPU_STATISTICS ORGANIZE%

%CPU_STATISTICS_ORGANIZE%

CPU time measured for the execution of the MESHFREE organization (point cloud management, geometry operations) at
the current time step

227

The CPU time for the execution of the MESHFREE organization (no pure MESHFREE numerics) is measured at the

current time step.
[... real(%CPU_STATISTICS_ORGANIZE% , Argument) ...]

Argument:
« 1 (per MESHFREE point average CPU time over all MPI processes)

« 2 (number of MPI processes times MINIMUM CPU time elapsed at some MPI process, divided by the global number

of MESHFREE points)

« 3 (number of MPI processes times MAXIMUM CPU time elapsed at some MPI process, divided by the global

number of MESHFREE points)
« 4 (summation of CPU time over all MPI processes)
« 5 (number of MPI processes times MINIMUM CPU time elapsed at some MPI process)
« 6 (number of MPI processes times MAXIMUM CPU time elapsed at some MPI process)

MESHFREE - InputFiles - USER_common variables - Equations - Function
TwoArguments - %DropletSource_provideCounter%

%DropletSource_provideCounter%
current status of the droplet counter of a given/defined DropletSource

[... real(%DropletSource_provideCounter% , Argument) ...]

Argument is the index of the DropletSource .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions -

real() -

real()

TwoArguments - %Dropl rce_provi rrentVolume?

%DropletSource_provideCurrentVolume%
current status of the actually injected volume by a given/defined DropletSource

[... real(%DropletSource_provideCurrentVolume% , Argument) ...]

Argument is the index of the DropletSource .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions -

TwoArguments - %DropletSource_provideTargetVolume%

%DropletSource_provideTargetVolume%
current status of the target volume of a given/defined DropletSource

[... real(%DropletSource_provideTargetVolume% , Argument) ...]

Argument is the index of the DropletSource .

MESHFREE - InputFiles - USER _common variables - Equations - Functions -

TwoArguments - %FPM_KineticEnergy%

%FPM_KineticEnergy%
total kinetic energy of a given chamber

real() -

real() -

228

[... real(%FPM_KineticEnergy% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy Defect O2%

%FPM_KineticEnergy Defect_02%
second order defect of kinetic energy during time integration

[... real(%FPM_KineticEnergy Defect_O2% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy Defect gradPv%

%FPM_KineticEnergy Defect_gradPv%
first order defect of kinetic energy during time integration due to pressure

[... real(%FPM_KineticEnergy_Defect _gradPv% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy Defect rhogDv%

%FPM_KineticEnergy_Defect_rhogDv%

first order defect of kinetic energy during time integration due to gravity

[... real(%FPM_KineticEnergy Defect rhogDv% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy_DifferencelnOrganize%

%FPM_KineticEnergy_DifferencelnOrganize%
change of kinetic energy in some chamber during MESHFREE organization

[... real(%FPM_KineticEnergy_DifferencelnOrganize% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy DifferencelnOrganize2%

%FPM_KineticEnergy DifferencelnOrganize2%
change of kinetic energy in some chamber during MESHFREE organization at the end of the time step

229

This value should be strictly zero.
[... real(%FPM_KineticEnergy_DifferencelnOrganize2% , Argument) ...]
Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER _common variables - Equations - Functions - real() -
TwoArguments - %FPM_KineticEnergy DifferencelnTimeStep%

%FPM_KineticEnergy DifferencelnTimeStep%
change of kinetic energy in some chamber during (pure) MESHFREE numerics

[... real(%FPM_KineticEnergy_DifferencelnTimeStep% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real()

TwoArguments - %FPM_RepMass CreatedByDropletSource%

%FPM_RepMass_CreatedByDropletSource%
representative mass created by the droplet sources in a chamber or material

[... real(%FPM_RepMass_CreatedByDropletSource% , Argument) ...]
Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .
WARNING: this functionality will deliver reasonable values only if used for INTEGRATION statements with the

%PUBLICVALUE% and %PUBLICVALUE_SUM% directives.
If used for boundary conditions, physical properties, etc., it will deliver O .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_RepMass_CreatedByInflowOQutflow%

%FPM_RepMass_CreatedBylInflowOutflow%
representative mass created by flow through %BND _inflow% and %BND_outflow% boundaries

[... real(%FPM_RepMass_CreatedByInflowOutflow% , Argument) ...]
Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .
WARNING: this functionality will deliver reasonable values only if used for INTEGRATION statements with the

%PUBLICVALUE% and %PUBLICVALUE_SUM% directives.
If used for boundary conditions, physical properties, etc., it will deliver O .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
TwoArguments - %FPM_RepMass DeletedAtMetaplanes%

%FPM_RepMass_DeletedAtMetaplanes%
representative mass reduced by deletion of MESHFREE points at metaplanes and EVENT-cuts

[... real(%FPM_RepMass_DeletedAtMetaplanes% , Argument) ...]
230

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

WARNING: this functionality will deliver reasonable values only if used for INTEGRATION statements with the
%PUBLICVALUE% and %PUBLICVALUE_SUM¢% directives.
If used for boundary conditions, physical properties, etc., it will deliver O .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_VOLUME_ACTUAL%

%FPM_VOLUME_ACTUAL%

actual value of volume in a given chamber

[... real(%FPM_VOLUME_ACTUAL% , Argument) ... |

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER _common variables - Equations - Functions - real() -
TwoArguments - %FPM_VOLUME_ DeletedAtMetaplanes%

%FPM_VOLUME_DeletedAtMetaplanes%
volume reduced by deletion of MESHFREE points at metaplanes AND by EVENT statements in the current time step

volume reduced by deletion of MESHFREE points at metaplanes and deletion triggered by EVENT -statements (
%EVENT_DeletePoint%) .

[... real(%FPM_VOLUME_DeletedAtMetaplanes% , Argument) ...]
Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .
WARNING: this functionality will deliver reasonable values only if used for INTEGRATION statements with the

%PUBLICVALUE% argument.
If used for boundary conditions, physical properties, etc., it will deliver 0 .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - real() -
TwoArguments - %FPM_VOLUME_TARGET%

%FPM_VOLUME_TARGET%

target value of volume in a given chamber

[... real(%FPM_VOLUME_TARGET% , Argument) ...]

Argument is the chamber index as given in KOP() or as specified by the CHAMBER -flag in AliasForGeometryltems .

MESHFREE - InputFiles - USER _common_variables - Equations - Functions - real() -
TwoArguments - %PUBLICVALUE_xValueOfBNDpoint%

%PUBLICVALUE_xValueOfBNDpoint%
x-coordinate of a BND_point carrying a certain POSTROCESS-flag

[... real(%PUBLICVALUE_xValueOfBNDpoint% , SPOSTPROCESS _flag$) ...]

$POSTPROCESS_flag$ has to be given at the definition level of the desired BND _point .

231

MESHFREE - InputFiles - USER _common variables - Equations - Functions -

TwoArguments - %PUBLICVALUE_ yValueOfBNDpoint%

%PUBLICVALUE_yValueOfBNDpoint%
y-coordinate of a BND_point carrying a certain POSTROCESS-flag

[... real(%PUBLICVALUE_yValueOfBNDpoint% , $POSTPROCESS flag$) ... |

$POSTPROCESS _flag$ has to be given at the definition level of the desired BND_point .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions -

real() -

real() -

TwoArguments - %PUBLICVALUE_zValueOfBNDpoint%

%PUBLICVALUE_zValueOfBNDpoint%
z-coordinate of a BND_point which carries a certain POSTROCESS-flag

[... real(%PUBLICVALUE_zValueOfBNDpoint% , $POSTPROCESS flag$) ... |

$POSTPROCESS _flag$ has to be given at the definition level of the desired BND _point .

MESHFREE - InputFiles - USER_common_variables - Equations - Functions -

TwoArguments - %SurfaceTriangulation_NbStencil%

%SurfaceTriangulation_NbStencil%
number of triangles/tetras established by free surface Delaunay triangulation

[... real(%SurfaceTriangulation_NbStencil% , Argument) ...]
Argument is the index of the MESHFREE point.
Example:

[... real(%SurfaceTriangulation_NbStencil% , Y %ind_IN%) ...]

MESHFREE - InputFiles - USER_common variables - Equations - Function
reduct()

incorporate results of PointCloudReduction operation

The result of a PointCloudReduction -definition can be used inside of an equation by:

begin_equation{ $EqunName$ }

real() -

reduct()

... reduct(iPointCloudReduction, OPTIONAL:%EQN_Reduct_Accumulated% , OPTIONAL:%EQN_Reduct_iCluster%)

end_equation

iPointCloudReduction is the index of the desired PointCloudReduction -statement.

%EQN_Reduct_Accumulated% shows how much of the reduction quantity is represented by the marked point.

%EQN_Reduct_iCluster% is the cluster index which naturally turns out during the PointCloudReduction -procedure.

232

Example:

PointCloudReduction (1) = ([1], [10]) # mark every 10-th MESHFREE point

SAVE_ITEM = (%SAVE_scalar% , [reduct(1,%EQN_Reduct_Accumulated¥%)], "nbPointsRepresented") # how many
points are represented by the marked point

SAVE_ITEM = (%SAVE_scalar% , [reduct(1,%EQN_Reduct_iCluster%)], "numberingClusteringindex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

PointCloudReduction (2) = ([Y %ind_Vi%], [&Hmax& 73]) # mark MESHFREE points which represent a volume that is
approximately equal to &Hmax& 3

SAVE_ITEM = (%SAVE_scalar% , [reduct(2,%EQN_Reduct_Accumulated¥%)], "volumeRepresented") # how many
points are represented by the selected point

SAVE_ITEM = (%SAVE_scalar% , [reduct(2,%EQN_Reduct_iCluster%)], "volumeClusteringindex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

PointCloudReduction (3) = ([reduct(1,%EQN_Reduct_Accumulated¥%)>0], [10]) # mark every 10-th MESHFREE point
out of the PointCloudReduction (1), i.e. every 100-th point

SAVE_ITEM = (%SAVE_scalar% , [reduct(3,%EQN_Reduct_Accumulated¥%)], "volumeRepresented") # how many
points are represented by the marked point

SAVE_ITEM = (%SAVE_scalar% , [reduct(3,%EQN_Reduct_iCluster%)], "volumeClusteringindex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - rot()

rot()
rotated vector

[... rot(i, x,y,z, p_rot_x,p_rot_y,p_rot_z, alpha_rot_x,alpha_rot_y,alpha_rot_z) ...]

The point (x,y, z) is rotated according to a defined reference point
(p_rot_x, p_rot_y, p_rot_z) and rotation angle (alpha_rot_x , alpha_rot_y , alpha_rot_z).

i = 1,2,3 yield the x-, y-, z-component of the rotated point, respectively.

Details:
The vector ¢ defines a rotation with angle § = ||a|| (in radians) around the unit vector e = q/ | -
It is calculated according to Rodrigues rotation formular, i.e.

Voot = [V — (e-v)e|cos(f) + [e x v]sin(f) + (e- v)e

with v denoting the vector from the reference point P to the point x which shall be rotated.
Clearly, the rotated point is then given by
Xrot = P+ Vrot

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - sin()
sin()

sine

[...sin(@) ...]

Computes the sine of a given in radians.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - sinh
sinh()
hyperbolic sine

233

[...sinh(@) ...]

Computes the hyperbolic sine of a .

MESHFREE -

sodst()

InputFiles -

USER_common_variables -

provide solution to sods shock tube problem

The Sod shock tube problem is a 1-D benchmark for GASDYN solvers. The function

[...sodst(ID,x) ...]

Equations -

Functions -

sodst()

gives the the analytical solution for density (ID=1), pressure (ID=2) and velocity (ID=3) at position x. We assume the initial
shock is at position 0 and the time of function evaluation is the current time Y %ind_time%
Example : Providing the analytical solution for Sod shock tube to user defined variables via CODI . The tube is oriented

parallel to the x-axis:

CODI_eq ($GASS$,%indU_rANA%) = [sodst(1,Y %ind_x(1)%)] # density
CODI_eq ($GASS$,%indU_pANA%) = [sodst(2,Y %ind_x(1)%)] # pressure
CODI_eq ($GASS$,%indU_uANA%) = [sodst(3,Y %ind_x(1)%)] # velocity

MESHFREE -

sqrt()

square root

[...sqrt(a) ...]

Computes the square root of a .

MESHFREE -

step()

(unit) step function

[... step(a) ...]

o Tif abs(a) <1
« 0if abs(a) > 1

InputFiles -

USER_common_variables -

InputFiles -

USER_common_variables -

MESHFREE - InputFiles - USER_common_variables -
tan()

tangent

[...tan(@) ...]

Computes the tangent of a given in radians.

Equations -

Equations -

Equations -

Functions - sqrt()
Functions - step()
Functions - tan()

234

MESHFREE - InputFiles - USER_common variables - Equations - Functions - tanh()

tanh()
hyperbolic tangent

[...tanh(a) ...]

Computes the hyperbolic tangent of a .

MESHFREE - InputFiles - USER_common variables - Equations - Functions - vCOG()
vCOG()

velocity of the center of gravity for a given MOVE-flag

[... xCOG(i, SMOVEFlag$) ...]

i = 1,2,3 yields the x-, y-, z-component of the velocity of the center of gravity for the given SMOVEFlag$, respectively.

$MOVEFlag$ is directly associated to all boundary elements carrying this MOVE -flag.

MESHFREE - InputFiles - USER_common_variables - Equations - Functions - xCOG()

XxCOG()
position of the center of gravity for a given MOVE-flag

[... xCOG(i, SMOVEFlag$) ...]

i = 1,2,3 yields the x-, y-, z-component of the center of gravity for the given $SMOVEFlag$, respectively.

$MOVEFIlag$ is directly associated to all boundary elements carrying this MOVE -flag.

MESHFREE - InputFiles - USER_common_variables - Equations - Operators
Operators

standard math operators

< :less than
a<b

Result is 1 if a is less than b and 0 otherwise.
> : greater than
a>b

Result is 1 if a is greater than b and 0 otherwise.
=:equal to
a=>b

Resultis 1 if a and b are equal and 0 otherwise.
I': not equal to
alb

235

Resultis 1 if a and b are not equal and 0 otherwise.
+ : summation, addition
a+b

Adds the values of a and b . The resultis the sumofaandb .
- : subtraction, difference
a-b

Subtracts b from a . The result is the difference ofaand b .
* : multiplication, product
a*b

Multiplies a and b . The result is the product ofaand b .
/ : division, quotient
a/b

Divides a by b . The result is the quotientofaand b .
Aor ** : power

a"b

a”*b

Takes a to the power of b .

MESHFREE - InputFiles - USER_common_variables - INITDATA

3.1.14. INITDATA

prescribe initial data conditions

To define a transient simulation model properly, initial conditions must be provided for the quantities of interest. In
MESHFREE , the initial condition is prescribed per material for each quantity by the following syntax:

INITDATA ($MatTag$,%ind_quantity%)= RightHandSideExpression

where $MatTag$ is the material tag, %ind_quantity% is the index of the quantity, and RightHandSideExpression is a
(scalar) expression.

Note:

« If the initial value of a quantity is not defined, this value is defaulted to 0.

o There are no checks, whether the initial value is reasonable or not. The user has to make sure to provide
appropriate initial values. For example, if k-epsilon turbulence modeling is turned on, k and epsilon must be
initialized to positive values.

« There are also no checks regarding consistency of the initial conditions to boundary conditions, e.g. at an inflow
boundary. The user should provide initial values consistent to the boundary conditions. This holds especially for the
velocity. If there are inconsistencies, then you might observe instabilities in the first couple of iterations.

Example 1: Define the initial temperature of material Air to be 273.15 K in teh simulation domain
INITDATA (Air ,%ind_T%)= 273.15

Example 2: Define the initial turbulence quantities of material Air as constant positive values in the simulation domain

INITDATA (Air ,%ind_eps%) = 10
INITDATA (Air ,%ind_k%) = 1e-4

MESHFREE - InputFiles - USER_common_variables - INTEGRATION

3.1.15. INTEGRATION

integration of the simulation results

236

With the help of INTEGRATION statements in USER_common_variables , simulation quantities can be further analyzed.
Application examples are monitoring conservation quantities such as the total mass in the simulation model or evaluating a
quantity like pressure at a certain position corresponding to a sensor in experiments.

The result of an INTEGRATION statement is a scalar value. For each timestep, the INTEGRATION statement is evaluated
and written to a so-called TimestepFile , that can be found in the result folder.

Optionally, each INTEGRATION statement can be supplemented with an %INTEGRATION_Header% to provide the
column headers, see HeaderlnfoOrComments .

Integration types

The following types of integrations are available:
« Volume and boundary integrals with respect to the point cloud
o Maximum, minimum, summation, average with respect to the point cloud
« Values and approximation for a BND_point

Public values of the MESHFREE simulation

Boundary integrals with respect to the boundary elements

o Maximum and minimum with respect to the boundary elements

« Assignment of function values to points (alternative to CODI and EVENT)

Volume and boundary integrals with respect to the point cloud

237

INTEGRATION ($Intind1$) = (%INTEGRATION_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$,

)
INTEGRATION ($Intind2$) = (%INTEGRATION_INT_TIME% , ExpressionOfintegrand , $MaterialTag1$,
$MaterialTag2$, ...)

INTEGRATION ($IntInd3$) = (%INTEGRATION_BND_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind4$) = (%INTEGRATION_BND_DIRECT_TIME% , ExpressionOfintegrand ,
$PostprocessTag1$, $PostprocessTag2$, ...)

INTEGRATION ($IntInd5$) = (%INTEGRATION_FS_DIRECT% , ExpressionOfintegrand , $MaterialTag1$,
$MaterialTag2$, ...)

INTEGRATION ($Intind6$) = (%INTEGRATION_FS_DIRECT_TIME% , ExpressionOfintegrand , $MaterialTag1$,
$MaterialTag2$, ...)

INTEGRATION ($Intind7$) = (%INTEGRATION_BND% , ExpressionOfintegrand , ExpressionOfintegrand ,
ExpressionOfintegrand , $PostprocessTag1$, $PostprocessTag2$, ...)

INTEGRATION ($Intind8$) = (%INTEGRATION_BND_TIME% , ExpressionOfintegrand , ExpressionOfintegrand ,
ExpressionOfintegrand , $PostprocessTag1$, $PostprocessTag2$, ...)

INTEGRATION ($IntInd9$) = (%INTEGRATION_FS% , ExpressionOfintegrand , ExpressionOfintegrand ,
ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)

INTEGRATION ($Intind10$) = (%INTEGRATION_FS_TIME% , ExpressionOfintegrand , ExpressionOfintegrand ,
ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)

INTEGRATION ($Intind11$) = (%INTEGRATION_FLUX% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind12$) = (%INTEGRATION_FLUX_TIME% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind13$) = (%INTEGRATION_ABSFLUX% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind14$) = (%INTEGRATION_ABSFLUX_TIME% , ExpressionOflntegrand , $PostprocessTag1$,

$PostprocessTag2$, ...)
INTEGRATION ($Intind15$) = (%INTEGRATION_FLUX_ DROPLETPHASE% , ExpressionOfintegrand ,

$PostprocessTag1$, $PostprocessTag2$, ...)
INTEGRATION ($Intind16$) = (%MASSFLOW_DROPLETPHASE% , ExpressionOfintegrand)

Application example: Monitoring conservation quantities such as mass or energy.

Maximum, minimum, summation, average with respect to the point cloud

238

INTEGRATION ($Intind17$) = (%6 MAXIMUM _INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)
INTEGRATION ($IntInd18%) = (%MINIMUM_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)
INTEGRATION ($Intind18%) = (%SUMMATION_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...

)
INTEGRATION ($Intind19%) = (% AVERAGE_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)

INTEGRATION ($IntInd20$) = (%6 MAXIMUM_BND% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind21$) = (%MINIMUM_BND% , ExpressionOfintegrand , $PostprocessTagl$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind21$) = (%SUMMATION_BND% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intind22$) = (% AVERAGE_BND% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($IntInd23$) = (%6 MAXIMUM_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)
INTEGRATION ($Intind24$) = (%MINIMUM_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)
INTEGRATION ($IntInd25%) = (% AVERAGE_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$, ...)

Application example: Monitoring the range of quantities like pressure.
Values and approximation for a BND_point

INTEGRATION ($Intind26$) = (%POINT_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intlnd27$) = (%POINT_APPROXIMATE% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intlnd28%) = (%POINT_APPROXIMATE_ProjBNDOnly% , ExpressionOfintegrand ,
$PostprocessTag1$, $PostprocessTag2$, ...)

Application example: Evaluating quantities in the simulation at the position where they are also measured in experiment.
Public values of the MESHFREE simulation

INTEGRATION ($IntInd29$) = (%PUBLICVALUE% , Functional)
INTEGRATION ($IntInd30$) = (%PUBLICVALUE_TIME% , Functional)
INTEGRATION ($Intind31$) = (%PUBLICVALUE_SUM% , Functional)

INTEGRATION ($Intind32$) = (%PUBLICVALUE_CLOCKSstatistics% , iArgument, "NameOfStopWatch")
INTEGRATION ($Intind33$) = (%PUBLICVALUE_CPUstatistics% , iArgument, "NameOfStopWatch")

Application example: Monitor the total number of points or other internal quantities.
Boundary integrals with respect to the boundary elements

INTEGRATION ($Intind34$) = (%BE_INTEGRATION_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

INTEGRATION ($Intlnd35%) = (%BE_INTEGRATION_DIRECT_TIME% , ExpressionOfintegrand , $PostprocessTag1$
, $PostprocessTag2$, ...)

Maximum and minimum with respect to the boundary elements

INTEGRATION ($IntInd36$) = (%MINIMUM_BE%, ExpressionOfintegrand , $PostprocessTag1$, $PostprocessTag2$

s o)
INTEGRATION ($Intlnd37$) = (%eMAXIMUM_BE%, ExpressionOfintegrand , $PostprocessTag1$,

$PostprocessTag2$, ...)

Maximum, minimum and sum with respect to the boundary nodes
239

INTEGRATION ($IntInd38$%) = (%MINIMUM_BENP%, ExpressionOfintegrand , $PostprocessTag1$,

$PostprocessTag2$, ...)

INTEGRATION ($IntInd39%) = (%6 MAXIMUM_BENP%, ExpressionOfintegrand , $PostprocessTag1$,

$PostprocessTag2$, ...)

INTEGRATION ($IntInd40$%) = (%SUM_BENP%, ExpressionOfintegrand , $PostprocessTag1$, $PostprocessTag2$,

)

$Intind...$: The user can (uniquely) choose these soft variables at will. There is no need for any further definition in

USER_common_variables .

They can be used to incorporate the result of the corresponding integration statement into an equation with the help of the

integ() -function.

Assign function values to points

INTEGRATION ($Intind41$) = (%ASSIGN_FUNCTIONVALUE% , %ind_{%, [AssignedFunctionValue], $MaterialTag1$

, $MaterialTag2$, ...)

Good to know:

« The soft variables are optional. If none is given, then MESHFREE counts the number of integration statements by
their appearance in USER_common_variables .
Warning: The syntax with and without soft variables must not be mixed.

- Instead of a soft variable $Intind$ also the legacy syntax with natural number n is possible. In this case all
integration statements in USER_common_variables have to be numbered consecutively to prevent overwriting.

- Example for setting the $PostprocessTag$ can be found under POSTPROCESS .

- Example for setting the $MaterialTag$ can be found under MAT .

« The scalar ExpressionOfintegrand is a typical RightHandSideExpression .

« The evaluated statement can be also incorporated into equations by using the function integ() .

For details on the specific statements, the SelectionFeatures , and HeaderInfoOrComments see below.

List of members:
ExpressionOfintegrand
Skip

TimestepFile
SequentialFiltering
SelectionFeatures
HeaderlnfoOrComments
AppendDataToEXxistingFiles

%ASSIGN_FUNCTIONVALU
E%

%INTEGRATION_INT%

%INTEGRATION_INT_TIME
%

%INTEGRATION_BND_DIR
ECT%

scalar expression to integrate with respect to a given region

additional options to skip computation of integrations

Results of INTEGRATION statements per timestep

generate writeout to timestep files due to simple sequential filters

additional options to further select MESHFREE integration points for integration
add comments for integration

append INTEGRATION results to an existing .timestep file

assign a function value to selected MESHFREE points

volume integration of a functional with respect to a given material

volume and time integration of a functional with respect to a given material

surface integration of a scalar value along pieces of boundary

240

%INTEGRATION_BND_DIR
ECT_TIME%

%INTEGRATION_FS_DIRE
CT%

%INTEGRATION_FS_DIRE
CT_TIME%

%INTEGRATION_BND%

%INTEGRATION_BND_TIM
E%

%INTEGRATION_FS%

%INTEGRATION_FS_TIME
%

%INTEGRATION_FLUX%

%INTEGRATION_FLUX_TI
ME%

%INTEGRATION_ABSFLUX
%

%INTEGRATION_ABSFLUX
_TIME%

%INTEGRATION_FLUX_DR
OPLETPHASE%

%MASSFLOW_DROPLETP

HASE%

Y%MAXIMUM_INT%

%MINIMUM_INT%

%SUMMATION_INT%

%AVERAGE_INT%

Y%MAXIMUM_BND%

%MINIMUM_BND%

%SUMMATION_BND%

%AVERAGE_BND%

surface and time integration of a scalar value along pieces of boundary

surface integration of a scalar value along the free surface

surface and time integration of a scalar value along the free surface

surface integration of a vector valued function along pieces of boundary

surface and time integration of a vector valued function along pieces of boundary

surface integration of a vector valued function along the free surface

surface and time integration of a vector valued function along the free surface

flux integration of a functional by counting the MESHFREE points that slip over a given
control surface

time and flux integration of a functional by counting the MESHFREE points that slip over a
given control surface

flux integration of a functional by counting the MESHFREE points that slip over a given
control surface independent of the direction

time and flux integration of a functional by counting the MESHFREE points that slip over a
given control surface independent of the direction

flux integration of a functional by counting the DROPLETPHASE points that slip over a
given control surface

mass flux integration of a functional by counting the DROPLETPHASE points that are
injected at all inflow surfaces

maximum of a functional based on all MESHFREE points with respect to given material
flags

minimum of a functional based on all MESHFREE points with respect to given material
flags

summation of given function values based on all MESHFREE points with respect to given
material flags

average of a functional based on all MESHFREE points with respect to given material flags

maximum of a functional based on all MESHFREE boundary points with respect to given
boundary elements

minimum of a functional based on all MESHFREE boundary points with respect to given
boundary elements

summation of given function values based on all MESHFREE boundary points with respect
to given boundary elements

average of a functional based on all MESHFREE boundary points with respect to given
boundary elements

241

Y%MAXIMUM_FS%

%MINIMUM_FS%

%AVERAGE_FS%

%POINT_DIRECT%
%POINT_APPROXIMATE%

%POINT_APPROXIMATE_P
rojBNDOnly%

%PUBLICVALUE%
%PUBLICVALUE_TIME%
%PUBLICVALUE_SUM%

%PUBLICVALUE_CLOCKst
atistics%

%PUBLICVALUE_CPUstatist
ics%

%BE_INTEGRATION_DIRE
CT%

%BE_INTEGRATION_DIRE
CT_TIME%

MESHFREE -

InputFiles -

maximum of a functional based on all MESHFREE free surface points with respect to given
material flags

minimum of a functional based on all MESHFREE free surface points with respect to given
material flags

average of a functional based on all MESHFREE free surface points with respect to given
material flags

write simple values like position, chamber index etc. of a BND_point to file
approximation of a functional at a BND_point by MESHFREE interpolation

approximation of a functional at a BND_point by MESHFREE interpolation with respect to
neighboring boundary points

public value of MESHFREE simulation
time-integrated public value of MESHFREE simulation
summed public value of MESHFREE simulation

CLOCK value of given stop watch

CPU value of given stop watch

surface integration of a scalar value on boundary elements

surface and time integration of a scalar value on boundary elements

USER_common_variables - INTEGRATION -

%ASSIGN_FUNCTIONVALUE%

%ASSIGN_FUNCTIONVALUE%

assign a function value to selected MESHFREE points

This function is rather not a typical INTEGRATION , as it does not reduce values of MESHFREE points to a scalar.
On the other hand, it is useful to assign values within the INTEGRATION -sequence, in order to use previous integration
results and to use assigned values in later integations.

INTEGRATION ($IntInd29%) = (%ASSIGN_FUNCTIONVALUE% , %ind_{%, [AssignedFunctionValue], $MaterialTag1$

, $MaterialTag2$, ...)

%ind_f% -> where to save the assigned values
[AssignedFunctionValue] -> what function value to assign (as usual, this can be anything in the framework of

RightHandSideExpression)

The assignment is restricted to the MESHFREE points belonging to the given MaterialTags, and can be further restricted

by the SelectionFeatures .

Neverthless, also this intergratin item will produce an entry in the timestep-file, which shall usually be zero.

INTEGRATION ($INT5$) = (%ASSIGN_FUNCTIONVALUE% , %indU_1%, [Y %ind_IN_glob%], SMATS ,
%INTEGRATION_Header%, "assign global point index to indU_1") # test

MESHFREE -

InputFiles -

USER_common_variables - INTEGRATION - %AVERAGE_BND%

242

%AVERAGE_BND%
average of a functional based on all MESHFREE boundary points with respect to given boundary elements

Average of a given functional f (ExpressionOfintegrand) with respect to the set Pgyp of all MESHFREE boundary
points with given POSTPROCESS -flags:

1
IAvgBNDZm z fi,

i€ Panp

where # Ppnp denotes the number of points in Prypy -

Example:
begin_alias{ }
"Alias1" =" ... POSTPROCESS$PostprocessTag1$... " # definition of Alias1
"Alias2" =" ... POSTPROCESS$PostprocessTag2$... " # definition of Alias2
end_alias

INTEGRATION ($IntInd$) = (%AVERAGE_BND% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %AVERAGE_FS%

%AVERAGE_FS%

average of a functional based on all MESHFREE free surface points with respect to given material flags

Average of a given functional f (ExpressionOfintegrand) with respect to the set Prg of all MESHFREE free surface
points with given material flags:

1
Tavgrs = - 5— Z fis
=]

where # Ppg denotes the number of points in Py -

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intind$) = (%AVERAGE_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - 9%AVERAGE_INT%

%AVERAGE_INT%

average of a functional based on all MESHFREE points with respect to given material flags

Average of a given functional f (ExpressionOfintegrand) with respect to the set P of all MESHFREE points with given
material flags:

1
IAvg = ﬁzfﬁ

iEP

243

where # P denotes the number of points in P .

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intlnd$) = (%AVERAGE_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%BE_INTEGRATION_DIRECT%

%BE_INTEGRATION_DIRECT%

surface integration of a scalar value on boundary elements

INTEGRATION ($Intind$) = (%BE_INTEGRATION_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is
not limited.

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region g(} identified by the
POSTPROCESS -flags

IBEDirect =ffdA
a6y

by a sum approximation

IsEDirect & E fi Aq,
icBE

where BE is the set of all boundary elements with the given postprocess flags.
fi is the function value and A; is the area of the i-th boundary element.

Example:
INTEGRATION ($area_PostprocessTag1$) = (%BE_INTEGRATION_DIRECT% , [1.0], $PostprocessTag1$)

Note: In contrast to %INTEGRATION_BND_DIRECT% , ExpressionOfintegrand is defined
and evaluated on the boundary elements and not on the MESHFREE point cloud!

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%BE_INTEGRATION_DIRECT_TIME%

%BE_INTEGRATION_DIRECT_TIME%

surface and time integration of a scalar value on boundary elements

244

INTEGRATION ($Intind$) = (%BE_INTEGRATION_DIRECT_TIME% , ExpressionOflntegrand , $PostprocessTag1$,

$PostprocessTag2$, ...)

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is

not limited.

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region §¢} identified by the

POSTPROCESS -flags

IE1;+L

IBEDirectTime =] ff(t)dfldt
typ G0

by a preliminary approximation

IBEDirect & Y fi (tnt1) * Ai (tnt1)
icBE

and a subsequent time integration:

IBEDirectTime (tn+1) = IBEDirectTime (tn) + (tn+1 — tn) - IBEDirect

BE is the set of all boundary elements with the given postprocess flags.
fi is the function value and A; is the area of the i-th boundary element.

Example:

INTEGRATION ($time_area_PostprocessTag1$) = (%BE_INTEGRATION_DIRECT_TIME% , [1.0],
$PostprocessTag1$)

Note: In contrast to %INTEGRATION_BND_DIRECT_TIME% , ExpressionOfIntegrand is defined
and evaluated on the boundary elements and not on the MESHFREE point cloud!

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_ABSFLUX%

%INTEGRATION_ABSFLUX%

flux integration of a functional by counting the MESHFREE points that slip over a given control surface independent of the

direction

begin_alias{ }

"AliasOmega" =" ... IDENT%BND_BIlindAndEmpty% ... POSTPROCESS$PostprocessTag$... " # definition of

AliasOmega
end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_ABSFLUX% , ExpressionOfintegrand , $PostprocessTag$)

Warning: %INTEGRATION_ABSFLUX% as well as %INTEGRATION_ABSFLUX_TIME% work only for boundary elements

marked with %BND_BlindAndEmpty% .

It computes the flux of a functional f (ExpressionOfintegrand) across a control surface in the sense:

245

TAbsFlux = ff- |an‘ dA
a0

This integral is approximated by summing up the MESHFREE points which are currently penetrating through
the control surface 9f} :

Vi
T AbsFux = _ z fi At
i€ Palipped
Pslipped is the set of all MESHFREE points which slipped over g} in this time step.
Here, the direction of penetration of a MESHFREE point does not matter.

Note: Skip is not recommended for this type of integration statement.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_ABSFLUX_TIME%

%INTEGRATION_ABSFLUX_TIME%

time and flux integration of a functional by counting the MESHFREE points that slip over a given control surface
independent of the direction

This is the time integration of %INTEGRATION_ABSFLUX% :

IAbsFluxTime =]IAbsrluxdt = E TAbsFlux,i - At
i=AllTimeSteps

Note: Skip is not recommended for this type of integration statement.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_BND%

%INTEGRATION_BND%

surface integration of a vector valued function along pieces of boundary

begin_alias{ }

"Alias1" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag1$... "
definition of Alias1

"Alias2" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag2$... "
definition of Alias2

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_BND% , Integrand_x, Integrand_y, Integrand_z, $PostprocessTag1$,
$PostprocessTag2$, ...)

This computes the integral with respect to the region H¢} identified by the POSTPROCESS -flags

IBnd = f uw-ndA
a0

by a sum approximation

246

Igna ~ E(Ui ‘) Ay,

ieP

where 1 represents the local boundary normal. The integrand « is given by the vector
(Integrand_x , Integrand_y , Integrand_z), whose components are all of type ExpressionOfintegrand .
P is the set of all boundary points with the given postprocess flags and A; is the area of the i-th point.

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is
not limited.

Example:

INTEGRATION ($pressure x$) = (%INTEGRATION_BND% , [Y %ind_p% +Y %ind_p_dyn%], [0], [O],
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_BND_DIRECT%

%INTEGRATION_BND_DIRECT%

surface integration of a scalar value along pieces of boundary

begin_alias{ }

"Alias1" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTagl$... "
definition of Alias1

"Alias2" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag2$... "
definition of Alias2

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_BND_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$, ...)

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is
not limited.

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region gf) identified by the
POSTPROCESS -flags

IBndDirecL = ffdA

a5

by a sum approximation

Isndpirect & E fi As,

iEPBnd

where Pg, . is the set of all boundary points with the given POSTPROCESS -flags and A; is the area of the i-th point.

Example:

247

INTEGRATION ($Intind1$) = (%INTEGRATION_BND_DIRECT% , [Y %ind_p% +Y %ind_p_dyn%],
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

INTEGRATION ($Intlnd2$) = (%INTEGRATION_BND_ DIRECT% , equn{ $EqnName$ }, $PostprocessTag1$,
$PostprocessTag2$, $PostprocessTag3$)

INTEGRATION ($Intlnd3$) = (%INTEGRATION_BND_ DIRECT% , curve{ $CrvName$ }depvar{%ind_DepVar%},
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

List of members:

IntegrationArea list of flags taggig the region with respect to which the integration is performed

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_BND_DIRECT% - IntegrationArea

IntegrationArea
list of flags taggig the region with respect to which the integration is performed

List of flags $PostprocessFlag1$, $PostprocessFlag2$, ... which have to be defined in the alias section (see
AliasForGeometryltems)
by attributes of the form POSTPROCESS $PostprocessFlag1$, POSTPROCESS $PostprocessFlag2$,

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION BND DIRECT TIME%

%INTEGRATION_BND_DIRECT_TIME%

surface and time integration of a scalar value along pieces of boundary

begin_alias{ }

"Alias1" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag1$... "
definition of Alias1

"Alias2" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag2$... "
definition of Alias2

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_BND_DIRECT_TIME% , ExpressionOfintegrand , $PostprocessTag1$
, $PostprocessTag2$, ...)

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is
not limited.

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region §¢} identified by the
POSTPROCESS -flags

IE'11+J.

IBhdDirect Time = f ff(f)dAdf

tp a0

by a preliminary approximation

IBndDirect = Z fi (tng1) - Ai (tngr)
'E'E-P.Bnd

and a subsequent time integration:

248

IBndDirecLTime (tn—f—l) = IBndDirecLTime {_tn) aF {_tn—f—l - tn) . IBndDirecL

Pg,4 is the set of all boundary points with the given postprocess flags and A; is the area of the i-th point.

Example:

INTEGRATION ($Intind1$) = (%INTEGRATION_BND_DIRECT_TIME% , [Y %ind_p% +Y %ind_p_dyn%],
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

INTEGRATION ($Intind2$) = (%INTEGRATION_BND_DIRECT TIME% , equn{ $EqnName$ }, $PostprocessTag1$,
$PostprocessTag2$, $PostprocessTag3$)

INTEGRATION ($IntInd3$) = (%INTEGRATION_BND_DIRECT_TIME% , curve{ $CrvName$
}depvar{%ind_DepVar%/}, $PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION _BND_TIME%

%INTEGRATION_BND_TIME%

surface and time integration of a vector valued function along pieces of boundary

begin_alias{ }
"Alias1" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTagl$... "

definition of Alias1

"Alias2" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... POSTPROCESS$PostprocessTag2$... "
definition of Alias2

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_BND_TIME% , Integrand_Xx, Integrand_y, Integrand_z,
$PostprocessTag1$, $PostprocessTag2$, ...)

This computes the integral with respect to the region g} identified by the POSTPROCESS -flags
I!-n-i-J.

IBndTime = u(t) - n(t)dAdt

[5.9
iy

by a preliminary approximation

Igna = Z (w; (tnt1) - 1i (Enr1)) Ai (Enti)

iEP

and a subsequent time integration:

IgndTime (tn+1) = IBndTime (tn) + (tns1 —tn) - IBnd

1. represents the local boundary normal. The integrand w is given by the vector
(Integrand_x , Integrand_y , Integrand_z), whose components are all of type ExpressionOfintegrand .
P is the set of all boundary points with the given postprocess flags and A; is the area of the i-th point.

The POSTPROCESS -flags $PostprocessTag1$, $PostprocessTag2$, ... define the IntegrationArea . Their number is
not limited.

Example:

INTEGRATION ($pressure_x$) = (%INTEGRATION_BND_TIME% , [Y %ind_p% +Y %ind_p_dyn%], [0], [0],
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

249

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FLUX%

%INTEGRATION_FLUX%

flux integration of a functional by counting the MESHFREE points that slip over a given control surface

begin_alias{ }

"AliasOmega" =" ... IDENT%BND_BIlindAndEmpty% ... POSTPROCESS$PostprocessTag$... " # definition of
AliasOmega

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_FLUX% , ExpressionOfintegrand , $PostprocessTag$)

Warning: %INTEGRATION_FLUX% as well as %INTEGRATION_FLUX_TIME% work only for boundary elements marked
with IDENT %BND_BlindAndEmpty% .

It computes the flux of a functional f (ExpressionOfintegrand) across a control surface in the sense:

Tt = f f- (@Tn)dA

[519;

This integral is approximated by summing up the MESHFREE points which are currently penetrating through
the control surface g} :

Vi
Iriux = Z f'i ' Sgn(vg ’ n%)A_;

i€ -Pglipp(:d

Pslipped is the set of all MESHFREE points which slipped over g} in this time step.
The term sgn(v? - n;) accounts for the direction the MESHFREE point goes through the control surface.

If the dependency from the direction should be ignored, the net value can be integrated by:

begin_alias{ }

"AliasOmega" = " ... IDENT%BND_BIlindAndEmpty% ... POSTPROCESS$PostprocessTag$... " # definition of
AliasOmega

end_alias

begin_construct{ }

"nOmega" = CONSTRUCT (%CONSTRUCT_Normal% , "AliasOmega") # definition of nOmega

end_construct

begin_equation{ $LeftOrRight$ }

if (Y %ind_v(1)% * &nOmega(1)& + Y %ind_v(2)% * &nOmega(2)& + Y %ind_v(3)% * &nOmega(3)& >0) :: 1.0
else ::-1.0

endif

end_equation

INTEGRATION ($Intind$) = (%INTEGRATION_FLUX% , [equn($LeftOrRight$)*(Functional)], $PostprocessTag$)

Integration without dependency of the direction of passage through the control surface is given by
%INTEGRATION_ABSFLUX% and %INTEGRATION_ABSFLUX_TIME% .

Note: Skip is not recommended for this type of integration statement.

DOWNLOAD COMPREHENSIVE EXAMPLE

250

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.INTEGRATION.%INTEGRATION_FLUX%

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FLUX DROPLETPHASE%

%INTEGRATION_FLUX_DROPLETPHASE%

flux integration of a functional by counting the DROPLETPHASE points that slip over a given control surface

begin_alias{ }

"AliasOmega" =" ... IDENT%BND_BIlindAndEmpty% ... POSTPROCESS$PostprocessTag$... " # definition of
AliasOmega

end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_FLUX_DROPLETPHASE% , ExpressionOflntegrand ,
$PostprocessTag$)

Warning: %INTEGRATION_FLUX_ _DROPLETPHASE% only works for boundary elements marked
%BND_BlindAndEmpty% .

It computes the flux of a functional f (ExpressionOfintegrand) across a control surface in the sense:

IF‘luxDmps = ff (an)dA
a5

This integral is approximated by summing up the DROPLETPHASE points which are currently penetrating through
the control surface §f} :

Vi
Il'-'ltnxDmps ~ z fi- Sgn(v;fr) ni)A_;

?:E-Pﬂ]i ppedDirops

PyippedDrops 18 the set of all DROPLETPHASE points which slipped over g(} in this time step.
The term sgn(v? - m;) accounts for the direction the DROPLETPHASE point goes through the control surface.

The current volume of a DROPLETPHASE point is determined by:

vi= g,

where d; is the mean diameter of the DROPLETPHASE (see %ind_d30%).

If the dependency from the direction should be ignored, the net value can be integrated by:

begin_alias{ }

"AliasOmega" =" ... IDENT%BND_BlindAndEmpty% ... POSTPROCESS$PostprocessTag$... " # definition of
AliasOmega

end_alias

begin_construct{ }

"nOmega" = CONSTRUCT (%CONSTRUCT_Normal% , "AliasOmega") # definition of nOmega

end_construct

begin_equation{ $LeftOrRight$ }

if (Y %ind_v(1)% * &nOmega(1)& + Y %ind_v(2)% * &nOmega(2)& + Y %ind_v(3)% * &nOmega(3)& >0) :: 1.0
else ::-1.0

endif

end_equation

INTEGRATION ($Intind$) = (%INTEGRATION_FLUX_DROPLETPHASE% , [equn($LeftOrRight$)*(Functional)],
$PostprocessTag$)

with

251

Note:

« This integration is analogous to %INTEGRATION_FLUX% . However, the DROPLETPHASE
points are used instead of the classical LIQUID points. For details on the Solvers , see
KindOfProblem and the respective links.

« Skip is not recommended for this type of integration statement.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FLUX TIME%

%INTEGRATION_FLUX_TIME%
time and flux integration of a functional by counting the MESHFREE points that slip over a given control surface

This is the time integration of %INTEGRATION_FLUX% :

IFluxTime = /IFluxdt ~ Y Iruxi At

i=AllTimeSteps

Note: Skip is not recommended for this type of integration statement.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %INTEGRATION_FS%

%INTEGRATION_FS%

surface integration of a vector valued function along the free surface

INTEGRATION ($Intind$) = (%INTEGRATION_FS% , Integrand_x, Integrand_y, Integrand_z, $MaterialTag$)

This computes the integral with respect to the free surface g{)pg identified by the material flag

Iys = / u - ndA
d8rs

by a sum approximation

Irs = Z (ui - mi) A,

1€ Prs

where n. represents the local free surface normal. The integrand w is given by the vector
(Integrand_x , Integrand_y , Integrand_z), whose components are all of type ExpressionOfintegrand .
Pgq is the set of all boundary points with the given material flag and A; is the area of the i-th point.

The material flag $MaterialTag$ defines the integration area (analogous to the POSTPROCESS -flags for
%INTEGRATION_BND%).

Note: Analogous to %INTEGRATION_INT% , a list of material flags can be used to specify the integration area. The
number of flags is not limited.

Example:
INTEGRATION ($pressure_x$) = (%INTEGRATION_FS% , [Y %ind_p% +Y %ind_p_dyn%], [0], [0], $MaterialTag$)

Note: In case of multiphase simulations with detection of interface connections (see PHASE_distinction), the interface
points are treated like free surface points.

252

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FS_DIRECT%

%INTEGRATION_FS_DIRECT%

surface integration of a scalar value along the free surface

INTEGRATION ($IntInd$) = (%INTEGRATION_FS_DIRECT% , ExpressionOfintegrand , $MaterialTag$)

The material flag $MaterialTag$ defines the integration area (analogous to the POSTPROCESS -flags for
%INTEGRATION_BND_DIRECT%).

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the free surface J{2pg identified by
the material flag

IFSDirect = f fdA
Mhrg

by a sum approximation

Irspirect & E fi - Ay,

i€ Prg

where Ppg is the set of all free surface points with the given material flag and A; is the area of the i-th point.

Note: Analogous to %INTEGRATION_INT% , a list of material flags can be used to specify the integration area. The
number of flags is not limited.

Example:

INTEGRATION ($Intind1$) = (%INTEGRATION_FS_DIRECT% , [Y %ind_p% +Y %ind_p_dyn%], $MaterialTag$)
INTEGRATION ($Intlnd2$) = (%INTEGRATION_FS_DIRECT% , equn{ $EgnName$ }, $MaterialTag1$,
$MaterialTag2$, $MaterialTag3$)

INTEGRATION ($Intind3$) = (%INTEGRATION_FS_DIRECT% , curve{ $CrvName$ }depvar{%ind_DepVar%},
$MaterialTag$)

Note: In case of multiphase simulations with detection of interface connections (see PHASE_distinction), the interface
points are treated like free surface points.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FS DIRECT TIME%

%INTEGRATION_FS_DIRECT_TIME%

surface and time integration of a scalar value along the free surface

INTEGRATION ($Intind$) = (%INTEGRATION_FS_DIRECT_TIME% , ExpressionOfintegrand , $MaterialTag$)

The material flag $MaterialTag$ defines the integration area (analogous to the POSTPROCESS -flags for
%INTEGRATION_BND_DIRECT_TIME%).

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the free surface @{}pg identified by
the material flag

253

"-1:+L

IFSDirecLTime=]]f(t)dAdt
tp le}?q

by a preliminary approximation

Irspirect & Z fi (tnt1) - Ai (tnpa)
i€ Prs

and a subsequent time integration:

IrsDirect Time (Ent+1) = IFsDirectTime (fn) + (tnt1 — tn) - IFSDirect

Frq is the set of all free surface points with the given material flag and 4; is the area of the i-th point.

Note: Analogous to %INTEGRATION_INT_TIME% , a list of material flags can be used to specify the integration area. The
number of flags is not limited.

Example:

INTEGRATION ($Intind1$) = (%INTEGRATION_FS_DIRECT_TIME% , [Y %ind_p% +Y %ind_p_dyn%],

$MaterialTag$)
INTEGRATION ($Intlnd2$) = (%INTEGRATION_FS_DIRECT TIME% , equn{ $EgnName$ }, $MaterialTag1$,

$MaterialTag2$, $MaterialTag3$)
INTEGRATION ($Intlnd3$) = (%INTEGRATION_FS_DIRECT_TIME% , curve{ $CrvName$ }depvar{%ind _DepVar%},

$MaterialTag$)

Note: In case of multiphase simulations with detection of interface connections (see PHASE_distinction), the interface
points are treated like free surface points.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%INTEGRATION_FS_TIME%

%INTEGRATION_FS_TIME%

surface and time integration of a vector valued function along the free surface

INTEGRATION ($Intind$) = (%INTEGRATION_FS_TIME% , Integrand_x, Integrand_y, Integrand_z, $MaterialTag$)

This computes the integral with respect to the free surface §{)gg identified by the material flag
l'-n+J.

IrsTime = f w(t) - n(t)dAdt
S Joaes

by a preliminary approximation

Ies~ Y (wi(ta41) i (Eng1)) Ai (tnpr)

i€ Ppg

and a subsequent time integration:

IFsTime (tnt1) = IFsTime (tn) + (tny1 —tn) - Irs

254

1. represents the local free surface normal. The integrand u is given by the vector
(Integrand_x , Integrand_y , Integrand_z), whose components are all of type ExpressionOfintegrand .
Drq is the set of all free surface points with the given material flag and 4; is the area of the i-th point.

The material flag $MaterialTag$ defines the integration area (analogous to the POSTPROCESS -flags for
%INTEGRATION_BND%).

Note: Analogous to %INTEGRATION_INT_TIME% , a list of material flags can be used to specify the integration area. The
number of flags is not limited.

Example:

INTEGRATION ($pressure_x$) = (%INTEGRATION_FS_TIME% , [Y %ind_p% +Y %ind_p_dyn%], [0], [O],
$PostprocessTag1$, $PostprocessTag2$, $PostprocessTag3$)

Note: In case of multiphase simulations with detection of interface connections (see PHASE_distinction), the interface
points are treated like free surface points.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %INTEGRATION_ INT%

%INTEGRATION_INT%

volume integration of a functional with respect to a given material

begin_alias{ }

"AliasOmega" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... " # definition of AliasOmega
end_alias

INTEGRATION ($Intind$) = (%INTEGRATION_INT% , ExpressionOfintegrand , $MaterialTag$)

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region () identified by the
material flag $MaterialTag$

I:E[fdv

by a sum approximation

f%Zfa‘-Vi;

ic P

where P is the set of all points with the given material flag and V/j is the volume of the i-th point.

Note: Analogous to %INTEGRATION_BND% , a list of material flags can be used to specify the integration region. The
number of flags is not limited.

Example:
« volume of a material

INTEGRATION ($volume$) = (%INTEGRATION_INT% , [1], $MaterialTag$)

« kinetic energy of a material

INTEGRATION ($energy$) = (%INTEGRATION_INT% , [0.5*Y %ind_r% *(Y %ind_v(1)% "2 + Y %ind_v(2)% "2
+Y %ind_v(3)% 72)], $MaterialTag$)

255

INTEGRATION -

MESHFREE - InputFiles - USER_common_variables -
%INTEGRATION_INT_TIME%

%INTEGRATION_INT_TIME%
volume and time integration of a functional with respect to a given material

begin_alias{ }
"AliasOmega" =" ... IDENT%BND_wall% ... MAT$MaterialTag$... BC$BCindex$... " # definition of AliasOmega

end_alias
INTEGRATION ($Intind$) = (%INTEGRATION_INT_TIME% , ExpressionOflntegrand , $MaterialTag$)

This computes the integral of a functional f (ExpressionOfintegrand) with respect to the region () identified by the
material flag $MaterialTag$
IE'1:+J.

ITime = f(f)dVdf

tp 0

by a preliminary approximation

I~ Zfz (tnv1) - Vi (tnra)

ieP

and a subsequent time integration:

ITime (tn—i—l) = ITime (t-n,) AP (tn—i—l - tﬂ.) T

P is the set of all points with the given material flag and V; is the volume of the i-th point.
Note: Analogous to %INTEGRATION_BND_TIME% , a list of material flags can be used to specify the integration region.

The number of flags is not limited.

Example: total turbulent dissipation of some material
INTEGRATION ($dissipation$) = (%INTEGRATION_INT_TIME% , [Y %ind_eps%], $MaterialTag$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -

%MASSFLOW_DROPLETPHASE%

%MASSFLOW_DROPLETPHASE%
mass flux integration of a functional by counting the DROPLETPHASE points that are injected at all inflow surfaces

INTEGRATION ($Intind$) = (%MASSFLOW_DROPLETPHASE% , ExpressionOfintegrand)

It computes the flux of a functional f (ExpressionOfintegrand) across all inflow surfaces in the sense:

256

hm=[ﬁA
a2

This integral is approximated by summing up the DROPLETPHASE points which are currently injected
at all inflow surfaces g} :

Vi
Iriow = fi-—
At

iePinje cted

Phjected is the set of all DROPLETPHASE points which are injected at g(} in this time step.

The current volume of a DROPLETPHASE point is determined by:

vi= zdb,

where ¢; is the mean diameter of the DROPLETPHASE (see %ind_d30%).

Example: massflow of DROPLETPHASE through all inflows
INTEGRATION ($massflow$) = (%MASSFLOW_DROPLETPHASE% , [Y %ind_r%])

Note:

« Details on the DROPLETPHASE can be found in the section Solvers , see
KindOfProblem and the respective link.
« Skip is not recommended for this type of integration statement.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %MAXIMUM_BND%

%MAXIMUM_BND%
maximum of a functional based on all MESHFREE boundary points with respect to given boundary elements

Maximum of a given functional f (ExpressionOfintegrand) with respect to the set Pgyp of all MESHFREE boundary
points with given POSTPROCESS -flags:

InvaxBND = max f;
i€ Penp

Example:
begin_alias{ }
"Alias1" =" ... POSTPROCESS$PostprocessTag1$... " # definition of Alias1
"Alias2" =" ... POSTPROCESS$PostprocessTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intlnd$) = (%MAXIMUM_BND% , ExpressionOfintegrand , $PostprocessTagi$,
$PostprocessTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %MAXIMUM_FS%

%MAXIMUM_FS%

maximum of a functional based on all MESHFREE free surface points with respect to given material flags

257

Maximum of a given functional f (ExpressionOfintegrand) with respect to the set Ppg of all MESHFREE free surface
points with given material flags:

I = max f;
MaxF8 i€ Pos fs.

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($IntInd$) = (%MAXIMUM_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %MAXIMUM_INT%

%MAXIMUM _INT%
maximum of a functional based on all MESHFREE points with respect to given material flags

Maximum of a given functional f (ExpressionOfintegrand) with respect to the set P of all MESHFREE points with given
material flags:

I = max f;
Mlax ieP fa

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($IntInd$) = (%MAXIMUM_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - 9%MINIMUM_BND%

%MINIMUM_BND%
minimum of a functional based on all MESHFREE boundary points with respect to given boundary elements

Minimum of a given functional f (ExpressionOfintegrand) with respect to the set Pryp of all MESHFREE boundary
points with given POSTPROCESS -flags:

Ing = min f;

MinBND i€Panp fs.

Example:
begin_alias{ }
"Alias1" =" ... POSTPROCESS$PostprocessTag1$... " # definition of Alias1
"Alias2" =" ... POSTPROCESS$PostprocessTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intind$) = (%MINIMUM_BND% , ExpressionOflntegrand , $PostprocessTag1$, $PostprocessTag2$
)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %MINIMUM_FS%

258

%MINIMUM_FS%

minimum of a functional based on all MESHFREE free surface points with respect to given material flags

Minimum of a given functional f (ExpressionOfintegrand) with respect to the set Ppg of all MESHFREE free surface
points with given material flags:

Ininrs = min fj

i€ Prg
Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intind$) = (%MINIMUM_FS% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - 9%MINIMUM_INT%

%MINIMUM_INT%

minimum of a functional based on all MESHFREE points with respect to given material flags

Minimum of a given functional f (ExpressionOfintegrand) with respect to the set P of all MESHFREE points with given
material flags:

Ingin = min f;
11 icP fﬂ.

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($Intind$) = (%MINIMUM_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%POINT_APPROXIMATE%

%POINT_APPROXIMATE%
approximation of a functional at a BND_point by MESHFREE interpolation

If a BND_point is active throughout the simulation and has a POSTPROCESS -flag, the user can approximate
any given function (ExpressionOfIntegrand) at this point by interpolation of MESHFREE points in its neighborhood:

INTEGRATION ($IntInd$) = (%POINT_APPROXIMATE% , ExpressionOfintegrand , $PostprocessTag$)

If the BND_point has no neighbors, the result is zero.

Example:

259

begin_boundary_elements{ }
BND_point ACTIVE%ACTIVE_always% CHAMBER1 POSTPROCESS $PostprocessTag$ x y z
end_boundary_elements {}

INTEGRATION ($Intind$) = (%POINT_APPROXIMATEY , [Y %ind_p% +Y %ind_p_dyn%], $PostprocessTag$)

See also %POINT_APPROXIMATE_ProjBNDOnly% and %POINT_DIRECT% .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%POINT_APPROXIMATE_ProjBNDOnNly%

%POINT_APPROXIMATE_ProjBNDONIly%
approximation of a functional at a BND_point by MESHFREE interpolation with respect to neighboring boundary points

If a BND_point is active throughout the simulation and has a POSTPROCESS -flag, the user can approximate
any given function (ExpressionOfintegrand) at this point by interpolation of MESHFREE boundary points in its
neighborhood:

INTEGRATION ($Intind$) = (%POINT_APPROXIMATE_ProjBNDOnly% , ExpressionOfintegrand , $PostprocessTag$
)

If the BND_point has no neighbors, the result is zero.

Example:

begin_boundary_elements{ }
BND_point ACTIVE%ACTIVE_always% CHAMBER1 POSTPROCESS $PostprocessTag$ x y z
end_boundary_elements {}

INTEGRATION ($Intind$) = (%POINT_APPROXIMATE_ProjBNDONly% , [Y %ind_p% +Y %ind_p_dyn%],
$PostprocessTag$)

See also %POINT_APPROXIMATE% and %POINT_DIRECT% .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %POINT_DIRECT%

%POINT_DIRECT%

write simple values like position, chamber index etc. of a BND_point to file

INTEGRATION ($Intind$) = (%POINT_DIRECT% , ExpressionOfintegrand , $PostprocessTag1$, $PostprocessTag2$, ...
)

Note: The only values this integration has access to are
Y %ind_x(1)c/o , Y %ind_x(2)% Y %ind_x(3)% , Y %ind_time% , Y %ind_cham% , Y %ind_h% .

For more complicated expressions, including the simulation result, please use
%POINT_APPROXIMATE% or %POINT_APPROXIMATE_ProjBNDOnNly% .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %PUBLICVALUE%

%PUBLICVALUE%
public value of MESHFREE simulation

260

INTEGRATION ($IntInd$) = (%PUBLICVALUE% , Functional)

Functional: equation based on public values of a MESHFREE simulation, i.e.
indirect point cloud and boundary element attributes

Example:

INTEGRATION ($pressure$) = (%INTEGRATION_BND_DIRECT% , [Y %ind_p% +Y %ind_p_dyn%],
$PostprocessTag$)
INTEGRATION ($area$) = (%INTEGRATION_BND_DIRECT% , [1.0], $PostprocessTag$)

INTEGRATION ($normalized_pressure$) = (%PUBLICVALUE% , [integ($pressure$)/integ($area$)])
INTEGRATION ($allocated_memory$) = (%PUBLICVALUE% , [real(%MEM_STATISTICS_ALLOC%)])

Note: If Functional has different values on the MPI processes, the standard behavior is that the maximum across all
processes is used to evalulate the integration statement.

Warning:
Acessing direct point cloud attributes such as Y%ind_...% together with %PUBLICVALUE% means that the attribute of the
point with index 1 is taken. Thus, this combination can lead to unexpected results for varying point attributes or empty MPI
processes. Only for the following indices, it is explicitly ensured that the correct point-independent variable is used:

« %ind_time% : Current (at the time of evaluating the expression) simulation time

e %ind_dt% : Current (at the time of evaluating the expression) simulation time step

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%PUBLICVALUE_CLOCKSstatistics%

%PUBLICVALUE_CLOCKSstatistics%
CLOCK value of given stop watch

The time values given by this option refer to the current time cycle.
INTEGRATION ($Intind$) = (%PUBLICVALUE_CLOCKSstatistics% , iArgument, "NameOfStopWatch")

iArgument:
- 1 (average per-point-values of CLOCK time measured by the indicated stop watch)
«2 (minimum per-point-values of CLOCK time measured by the indicated stop watch:
N_MPI*min(CLOCK(1...N_MPI)/N_MFpoints)
« 3 (maximum per-point-values of CLOCK time measured by the indicated stop watch:
N_MPI*max(CLOCK(1...N_MPI)/N_MFpoints)
4 (sum of the CLOCK-times over all MPI processes)
e 5 (minimum CLOCK-time: N_MPI*min(CLOCK(1...N_MPI))
6 (maximum CLOCK-time: N_MPI*max(CLOCK(1...N_MPI))

NameOfStopWatch: see NamesOfStopWatches .

Example:

261

begin_timestepfile{ "TimeStatistics"}

INTEGRATION ($Intind1$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)]) # this puts the time into the first

column

INTEGRATION ($IntInd2$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intind3$) = (%PUBLICVALUE_CLOCKSstatistics% , 1, "ADMIN_TIME_INTEG.FLIQUID")
INTEGRATION ($Intind4$) = (%PUBLICVALUE_CLOCKstatistics% , 2, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intind5$) = (%PUBLICVALUE_CLOCKSstatistics% , 2, "ADMIN_TIME_INTEG.FLIQUID")
INTEGRATION ($Intind6$) = (%PUBLICVALUE_CLOCKstatistics% , 3, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intind7$) = (%PUBLICVALUE_CLOCKSstatistics% , 3, "ADMIN_TIME_INTEG.FLIQUID")

end_timestepfile

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%PUBLICVALUE_CPUstatistics%

%PUBLICVALUE_CPUstatistics%
CPU value of given stop watch

The time values given by this option refer to the current time cycle.
INTEGRATION ($Intind$) = (%PUBLICVALUE_CPUstatistics% , iArgument, "NameOfStopWatch")

iArgument:
« 1 (average per-point-values of CPU time measured by the indicated stop watch)

e 2 (minimum per-point-values of CPU time measured by the indicated stop

N_MPI*min(CPU(1...N_MPI)/N_MFpoints)

« 3 (maximum per-point-values of CPU time measured by the indicated stop

N_MPI*max(CPU(1...N_MPI)/N_MFpoints)
4 (sum of the CPU-times over all MPI| processes)

e 5 (minimum CPU-time: N_MPI"min(CPU(1...N_MPI))
6 (maximum CPU-time: N_MPI*max(CPU(1...N_MPI))

NameOfStopWatch: see NamesOfStopWatches .

Example:

begin_timestepfile{ "TimeStatistics"}

watch:

watch:

INTEGRATION ($Intind1$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)]) # this puts the time into the first

column

INTEGRATION ($Intlnd2$) = (%PUBLICVALUE_CPUstatistics% , 1, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd3$) = (%PUBLICVALUE_CPUstatistics% , 1, "ADMIN_TIME_INTEG.FLIQUID")
INTEGRATION ($Intlnd4$) = (%PUBLICVALUE_CPUstatistics% , 2, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd5$) = (%PUBLICVALUE_CPUstatistics% , 2, "ADMIN_TIME_INTEG.FLIQUID")
INTEGRATION ($Intlnd6$) = (%PUBLICVALUE_CPUstatistics% , 3, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd7$) = (%PUBLICVALUE_CPUstatistics% , 3, "ADMIN_TIME_INTEG.FLIQUID")

end_timestepfile

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%PUBLICVALUE_SUM%

%PUBLICVALUE_SUM%
summed public value of MESHFREE simulation

INTEGRATION ($IntInd$) = (%PUBLICVALUE_SUM% , Functional)

262

Functional: equation based on public values of a MESHFREE simulation, i.e.
indirect point cloud and boundary element attributes

This is the time summation of %PUBLICVALUEY :

IpublicSum = E Ipubilic,i
i=AllTimeSteps

Example:
INTEGRATION ($sum_monitor$) = (%PUBLICVALUE_SUM% , [real(%MONITOR_NbParticles%)])

Note: If Functional has different values on the MPI processes, the standard behavior is that the maximum across all
processes is used to evalulate the integration statement.

Warning: The same warning as for %PUBLICVALUE% applies here.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
%PUBLICVALUE_TIME%

%PUBLICVALUE_TIME%
time-integrated public value of MESHFREE simulation

INTEGRATION ($Intlnd$) = (%PUBLICVALUE_TIME% , Functional)

Functional: equation based on public values of a MESHFREE simulation, i.e.
indirect point cloud and boundary element attributes

This is the time integration of %PUBLICVALUE% :

IpyblicTime & E Npatsiz - - i
i=AllTimeSteps

Example:

INTEGRATION ($pressure$) = (%INTEGRATION_BND_DIRECT% , [Y %ind_p% +Y %ind_p_dyn%],
$PostprocessTag$)

INTEGRATION ($time_pressure$) = (%PUBLICVALUE_TIME% , [integ($pressure$)])
INTEGRATION ($integ_monitor$) = (%PUBLICVALUE_TIME% , [real(%MONITOR_NbParticles%)])

Note: If Functional has different values on the MPI processes, the standard behavior is that the maximum across all
processes is used to evalulate the integration statement.

Warning: The same warning as for %PUBLICVALUE% applies here.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %SUMMATION_BND%

%SUMMATION_BND%

summation of given function values based on all MESHFREE boundary points with respect to given boundary elements

Summation of a given functional f (ExpressionOfintegrand) with respect to the set Pgyp of all MESHFREE boundary
points with given POSTPROCESS -flags:

263

IsuymBND = Z f:i

i€ PenD
Example:
begin_alias{ }
"Alias1" =" ... POSTPROCESS$PostprocessTag1$... " # definition of Alias1
"Alias2" =" ... POSTPROCESS$PostprocessTag2$... " # definition of Alias2

end_alias
INTEGRATION ($IntInd$) = (%SUMMATION_BND% , ExpressionOfintegrand , $PostprocessTag1$,
$PostprocessTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - %SUMMATION_INT%

%SUMMATION_INT%

summation of given function values based on all MESHFREE points with respect to given material flags

Summation of a given functional f (ExpressionOfintegrand) with respect to the set p of all MESHFREE points with
given material flags:

ISum = Zfs.

iEP

Example:
begin_alias{ }
"Alias1" =" ... MAT$MaterialTag1$... " # definition of Alias1
"Alias2" =" ... MAT$MaterialTag2$... " # definition of Alias2
end_alias

INTEGRATION ($IntInd$) = (%SUMMATION_INT% , ExpressionOfintegrand , $MaterialTag1$, $MaterialTag2$)

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -
AppendDataToEXxistingFiles

AppendDataToEXxistingFiles
append INTEGRATION results to an existing .timestep file

For some purposes, it might be favorable to append the data to an existing file of the same column structure:

begin_timestepfile{ "MyFile"} append{ }
INTEGRATION (...) = (...)
end_timestepfile

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - ExpressionOfintegrand

ExpressionOfintegrand
scalar expression to integrate with respect to a given region

The integrand expression is a typical RightHandSideExpression in the scope of USER_common_variables .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION -

264

HeaderlnfoOrComments

HeaderinfoOrComments

add comments for integration

Enhance a classical integration statement by header information by appending the identifier %INTEGRATION_Header%
and the header text "comment" to the argument list of the integration statement:

INTEGRATION ($Intind$) = (%INTEGRATION_...%, ExpressionOfintegrand , ..., $PostprocessTag1$,
$PostprocessTag2$, ..., %INTEGRATION_Header% , "comment")

The header text will be written in the appropriate timestep-file. So, if the integration will be written in the $Intind$-th column
of xyz.timestep, then the header information will appear in a file with the name xyz.timestep.header in the $Intind$-th line.

Example:

begin_timestepfile{ "MyFile"}

INTEGRATION ($time$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)], %INTEGRATION_Header% ,
"current simulation time")

INTEGRATION ($Wkin$) = (%INTEGRATION_INT% , [Y %ind_v(1)% "2+Y %ind_v(2)% "2+Y %ind_v(3)% 2],
$MaterialTag$, %INTEGRATION_Header% , "kinetic energy")

INTEGRATION ($mass$) = (%INTEGRATION_INT% , [Y %ind_r%], $MaterialTag$, %INTEGRATION_Header% ,
"total mass")

INTEGRATION ($Wint$) = (%INTEGRATION_INT% , [Y %ind_r% *Y %ind_CV% *Y %ind_T%], $MaterialTag$,
%INTEGRATION_Header% , "internal energy")

end_timestepfile

This will create the file "MyFile.timestep.header" with the following contents:

current simulation time
kinetic energy

total mass

internal energy

Note: This option always needs to be the /ast one in an integration statement.

MESHFREE - InputFiles - USER common_variables - INTEGRATION - lectionF r

SelectionFeatures
additional options to further select MESHFREE integration points for integration

A regular integration statement is given by:

INTEGRATION ($Intind$) = (%INTEGRATION_INT_...%, ExpressionOfintegrand , $MaterialTag$, $MaterialTag2$, ...

)
INTEGRATION ($Intind$) = (%INTEGRATION_BND _...%, ExpressionOfintegrand , $BoundaryTag$,
$BoundaryTag2$, ...)

This statement integrates over all MESHFREE points with the material flag $MaterialTag$ or with the boundary flags
$BoundaryTag$ with no further selection of integration points.

If a more distinct selection is needed, use either or both of
« SelectBySwitchOffFunctional
« SelectByPercentileBounds

265

This is the selection order:

1.) first select by the given $MaterialTag$ or $BoundaryTag$

2.) on top of this, select by SelectBySwitchOffFunctional , if invoked
3.) on top of this, select by SelectByPercentileBounds , if invoked

List of members:
SelectBySwitchOffFunctional further selection MESHFREE integration points by switch-off-functional

SelectByPercentileBounds further selection of MESHFREE integration points by percentile restrictions

MESHFREE - InputFiles - USER _common variables - INTEGRATION - SelectionFeatures -
SelectByPercentileBounds

SelectByPercentileBounds
further selection of MESHFREE integration points by percentile restrictions

INTEGRATION ($Intind$) = (%INTEGRATION_INT_...%, ExpressionOfintegrand , %INTEGRATION_Percentile% ,
p_MIN, p_MAX, [f_TEST], [f_WEIGHT], $MaterialTag$)

INTEGRATION ($Intind$) = (%INTEGRATION_BND_...%, ExpressionOfintegrand , %INTEGRATION_Percentile% ,
p_MIN, p_MAX, [f_TEST], [f_WEIGHT], $BoundaryTag$)

The percentile ideas is as follows.

1. Define the values

W _ 3 FWEIGHT .)))
MIN - i i.e. the collected weights of all points whose test-function-value is smaller than
LEN, fTE5T < frn
i
W _ 3 FWEIGHT .)))
MAX . i i.e. the collected weights of all points whose test-function-value is smaller than
iEN,fi-TE‘E’T < fmax
fuax WEIGHT
WaLL = Z fi ’ i.e. the collected weights of all considered points

ieEN

2. find fyiw, faiax such that

Wi = pavan - WaLL

Watax = pmax - WaLL

3. select all those points for which we have

MIN = J; : = JMAX
f < fTEEaT < f

Example: find maximum global index of MESHFREE points with restrictions

INTEGRATION (1) = (%MAXIMUM _INT% , [Y %ind_IN_glob%], SMAT$, %INTEGRATION_Header%, "maximum
global index™")

INTEGRATION (2) = (%MAXIMUM _INT% , [Y %ind_IN_glob%],

%INTEGRATION_Percentile%, 0, 0.90, [Y %ind_IN_glob%], 1,

SMATS ,

%INTEGRATION_Header%, "maximum global index in the 90-percentile-range”)

INTEGRATION (3) = (-%MAXIMUM_INT%, [Y %ind_IN_glob%], [Y%ind_proc%<2],

%INTEGRATION_Percentile%, 0, 0.90, [Y %ind_IN_glob%], 1,

$GLASSS ,

%INTEGRATION_Header%, "maximum global index in the 90-percentile-range restricted to the first two MPI-procs")

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - SelectionFeatures -
SelectBySwitchOffFunctional

266

SelectBySwitchOffFunctional
further selection MESHFREE integration points by switch-off-functional

INTEGRATION ($IntInd$) = (- %INTEGRATION_INT% , ExpressionOfintegrand , SelectionFunctionallntegral ,
$MaterialTag$)

Rules:
o Put a minus sign (-) in front of the %INTEGRATION_...%-identifier.
« SelectionFunctionallntegral has to be placed at the end of all mathematical integration functionals. If
SelectionFunctionallntegral > 0 for a
MESHFREE point, the point will be considered for the integration, otherwise it is ignored.

Warning: This feature does not (yet) apply for %POINT _...%, %INTEGRATION_FLUX...%, and %PUBLICVALUE...%.

Note:If this feature is used for%BE_INTEGRATION DIRECT% , %BE_INTEGRATION_DIRECT TIME% ,
%MINIMUM_BE% or %MAXIMUM_BE%,
SelectionFunctionallntegral is defined and evaluated on the boundary elements and not on the MESHFREE point cloud!

Example:

INTEGRATION ($Intind1$) = (- %AVERAGE_INT% , ExpressionOfintegrand , SelectionFunctionallntegral ,
$MaterialTag$)

INTEGRATION ($Intind2$) = (- %MINIMUM_BND% , ExpressionOfintegrand , SelectionFunctionallntegral ,
$PostprocessTag$)

INTEGRATION ($IntInd3$) = (- %INTEGRATION_BND% , ExpressionOfintegrand , ExpressionOfintegrand ,
ExpressionOfintegrand , SelectionFunctionallntegral , $PostprocessTag$)

Note: This is an experimental solution. In the future, the syntax of the selective integration will be improved and made
consistent.

List of members:

SelectionFunctionallntegral scalar expression to select or switch off specific points for integration

MESHFREE - InputFiles - USER _common variables - INTEGRATION - SelectionFeatures -
SelectBySwitchOffFunctional - SelectionFunctionallntegral

SelectionFunctionalintegral
scalar expression to select or switch off specific points for integration

The selection functional is a typical RightHandSideExpressionin the scope of USER_common_variables. If
SelectionFunctionallntegral > 0 for an
MESHFREE point, the point will be considered for the integration, otherwise it is ignored.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - SequentialFiltering

SequentialFiltering
generate writeout to timestep files due to simple sequential filters

In many cases, the user wishes to reduce the data produced by the .timestep files. If INTEGRATION data are explicitly
written to
a dedicated .timestep-file by the begin_timestepfile{ - clause, then one can define time filters.

267

Example: additinal sequential filtering

begin_timestepfile{ "TimeStatistics"} filter{ %INTEGRATION_FilterBy...%, filterThreshold }

INTEGRATION ($Intind1$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)]) # this puts the time into the first
column

INTEGRATION ($Intlnd2$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd3$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.FLIQUID")
end_timestepfile

Over a number of time cycles, the filtered integration results are averaged by the following way:

| 2 (M ulE (— ti)
integ __ L iEN

um;erage - 9 Z (ti . ti—l)
ieN

that means it is a weighted average with the time step size to be the weight. In this way, we can guarantee conservation

properties of some variables like momentum etc.

List of members:
%INTEGRATION_FilterByTime% trigger the writeouts time .timestep files based on intervals of simulation time

%INTEGRATION_FilterByTimestepCou trigger the writeouts time .timestep files based on intervals of number of time
nter% steps executed

MESHFREE - InputFiles - USER _common_variables - INTEGRATION - SequentialFiltering -
%INTEGRATION_FilterByTime%

%INTEGRATION_FilterByTime%
trigger the writeouts time .timestep files based on intervals of simulation time

Example: filtering by simulation time passed

begin_timestepfile{ "TimeStatistics"} filter{ %INTEGRATION_FilterByTime% , timelnterval }

INTEGRATION ($Intind1$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)]) # this puts the time into the first
column

INTEGRATION ($Intlnd2$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd3$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.FLIQUID")
end_timestepfile

here we force MESHFREE to write out the INTEGRATION results in time intervals of the given value timelnterval .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - SequentialFiltering -
%INTEGRATION_FilterByTimestepCounter%

%INTEGRATION_FilterByTimestepCounter%
trigger the writeouts time .timestep files based on intervals of number of time steps executed

Example: filtering by time steps executed

begin_timestepfile{ "TimeStatistics"} filter{ %INTEGRATION_FilterByTimestepCounter% , stepinterval }
INTEGRATION ($Intind1$) = (%PUBLICVALUE% , [real(%RealTimeSimulation%)]) # this puts the time into the first
column

INTEGRATION ($IntInd2$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.ORGANIZE")
INTEGRATION ($Intlnd3$) = (%PUBLICVALUE_CLOCKstatistics% , 1, "ADMIN_TIME_INTEG.FLIQUID")
end_timestepfile

268

here we force MESHFREE to write out the INTEGRATION results always after a number of steplnterval time cycles has
passed.

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - Skip
Skip

additional options to skip computation of integrations

If the integration results are not required in every time step, they can be skipped for a number of time steps or after a
certain interval of the simulation time has passed to save computation time. The last computed value is written to file
whenever the computation is skipped.

INTEGRATION ($Intind1$) = (Type, ExpressionOfintegrand , MaterialOrBoundaryTags,
%INTEGRATION_SkipByTimestepCounter% , TimeStepThreshold)

INTEGRATION ($Intind2$) = (Type, ExpressionOfintegrand , MaterialOrBoundaryTags,
%INTEGRATION_SkipByTime% , TimeThreshold)

Example:

INTEGRATION ($volume$) = (%INTEGRATION_INT% , [1.0], $MaterialTag$,
%INTEGRATION_SkipByTimestepCounter% , 5)

INTEGRATION ($freesurface$) = (%INTEGRATION_FS% , [1.0], $MaterialTag$, %INTEGRATION_SkipByTime% ,
0.025)

Warning: Skipping is highly discouraged for flux or massflow computations (%...FLUX...%, %.... DROPLETPHASE%) and
any types with %..._ TIME% and %..._ SUM% if the integrand is highly variable in time.

Note: For %..._TIME% and %..._.SUM%, the newly computed value is multiplied with the interval just passed. If the
integrand is computed in a separate integration statement, with skip, but then integrated over time with
%PUBLICVALUE_TIME% or %PUBLICVALUE_SUM% , this uses the old computed value over the interval and thus may
lead to a slightly different value.

List of members:
%INTEGRATION_SkipByTime% skip computation of integrations for a given time interval

%INTEGRATION_SkipByTimestepCounter% skip computation of integrations for a number of timesteps

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - Skip -
%INTEGRATION_SkipByTime%

%INTEGRATION_SkipByTime%

Skip computation of integrations for a given time interval

See Skip .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - Skip -
%INTEGRATION_SkipByTimestepCounter%

%INTEGRATION_SkipByTimestepCounter%

Skip computation of integrations for a number of timesteps

269

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.INTEGRATION.Skip___integration___

See Skip .

MESHFREE - InputFiles - USER_common_variables - INTEGRATION - TimestepFile

TimestepFile
Results of INTEGRATION statements per timestep

MESHFREE stores the result of the INTEGRATION statements in so-called timestep files. These are pure ASCII files with
the ending .timestep in the result folder and they contain the INTEGRATION evaluation (column) for each timestep (rows).
Default Timestep File

The default timestep file is always created (unless suppressed by certain choices of SAVE_type) and contains at least two
columns at the beginning: the simulation time of the timestep and the timestep size of the timestep. All INTEGRATION
statements not defined within a begin_timestepfile{ environment (see below) will be evaluated into the default timestep file.

Additional Timestep Files

Additional timestep files contain precisely the columns that the user defines within the environment enclosed by
begin_timestepfile{ and end_timestepfile .
Example: In order to have the simulation time in the first column it can be specified by:
begin_timestepfile{ "myOwnTimestepFile"}
INTEGRATION = (%PUBLICVALUE% , [real(%RealTimeSimulation%)], %INTEGRATION_Header%, "Simulation
Time")
INTEGRATION = ...

end_timestepfile

For more examples, see the links at begin_timestepfile{ .
Header Files

It is good practice to declare an %INTEGRATION_Header% for all INTEGRATION statements. These headers are found
in the corresponding file with the ending .timestep.header, see HeaderlnfoOrComments .

MESHFREE - InputFiles - USER_common_variables - KindOfProblem

3.1.16. KindOfProblem

Solver Selection for a simulation chamber

For each simulation CHAMBER the KindOfProblem (or KOP) selects the numerical solver to be used for numerical
integration.
All parameters need to be specified per chamber (i.e. per flow phase).

The general form of the statement is

KOP(iChamber) = Solvers IntegrationType Timelntegration MotionOfPointcloud TurbulenceModel
Example:
KOP(1) = LIQUID LAGRANGE IMPLICIT v-- TURBULENCE::k-epsilon

This selects:
« the LIQUID solver
« applies Lagrangian movement of the point cloud and
« solves the equations implicitely using the segregated v-- solver.
« Additionally, the k-epsilon turbulence model is turned on, see KepsilonAlgorithm .

Except for the turbulence these are the default parameters which will be assumed if one parameter is not specified. The
270

order of the parameters is not relevant.

List of members:

Solvers Select the solver base on a physical model
MotionOfPointcloud Movement of point-cloud

Timelntegration Order of time integration

IntegrationType Numerical Scheme used for time integration
TurbulenceModel Selection of turbulence model

MESHFREE - InputFiles - USER_common_variables - KindOfProblem -

IntegrationType
Numerical Scheme used for time integration

Defines the Scheme to be used for solving the system of equations for velocity
and pressure.

Note:
This only applies to LIQUID .

Available Schemes:

V__
Segregated solver for incompressible flow.
vp-
Coupled implicit solver with penalty formulation for incompressible flow.

IntegrationType

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - MotionOfPointcloud
MotionOfPointcloud

Movement of point-cloud

This selects the point of view for the description of the flow equations. At the

same time this also describes if a fixed point-cloud (EULER) or a moving point-cloud

(LAGRANGE) is used.

List of members:

LAGRANGE Lagrangian motion

EULER implicit Eulerian or ALE motion (1st order)

EULERIMPL Higher order implicit Eulerian or ALE motion (recommended among the Euler implementations)
MESHFREE - InputFiles - USER _common_variables - KindOfProblem - MotionOfPointcloud -

EULER
EULER

implicit Eulerian or ALE motion (1st order)

271

Eulerian formulation of flow equations. The point-cloud is fixed except for moving boundaries. All quantities are transported
numerically from one point to the other.

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - MotionOfPointcloud -
EULERIMPL

EULERIMPL

Higher order implicit Eulerian or ALE motion (recommended among the Euler implementations)

Transport terms are approximated with a second order accurate scheme. It uses upwinding in combination with MUSCL-
reconstruction schemes to

prevent high numerical diffusion and uses an implicit time integration scheme of second order.

It is the Singly Diagonally Implicit Runge-Kutta(SDIRK) method of Alexander. We use the abbreviation SDIRK2 .

Example:

KOP(1) = LIQUID EULERIMPL T:EXPIMP(1.0) V:IMPLICIT v-- TURBULENCE :k-epsilon

ATTENTION: Please note the remark for the velocity boundary condition BC_v !l
List of parameters:
« LIMITER
« BETA_FOR_LIMITER
« NB_OF_ACCEPTED_REPETITIONS
« SUBSTEPS_IMPL
o SpecialBNDtreatmentEULERIMPL (experimental)
« StencilOrderReductionNearBND_forEULERIMPL (experimental)
« SkipMarkingPointsLayer2 (experimental)
o TOL_T (control of time step size)
o TOL_keps (control of time step size)
« TOL_v (control of time step size)
o« TRANSPORT_ODE_fct_evaluation (experimental)
« additionalPoint_approximation (experimental)
o pure_TRANSPORT (experimental)
time_integration_impl
« time_integration_impl_solve_v

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - MotionOfPointcloud -
LAGRANGE

LAGRANGE

Lagrangian motion

Lagrangian equations with moving point-cloud. Points move with the
local velocity of the flow. Advective properties are carried through this movement.

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - Solvers

Solvers
Select the solver base on a physical model

MESHFREE provides a set of different physical models (see Numerics). The LIQUID solver
is the most prominent one used for various kinds of simulations; even for air when it is assumed to be incompressible or
weakly-compressible.

Set of keywords:

272

LIQUID

Solver for incompressible and weakly compressible flow.

GASDYN

Solver for compressible flow.

SHALLOWWATER

Solver for shallow water equations to simulate thin water sheets in 2D.
Usually coupled to a LIQUID phase.

POPBAL

Population balance equations. Bubbles of a secondary phase are represented as
local stochastic distribution of droplet sizes.

DROPLETPHASE
Explicit solver for droplets which may interact and collect as water films along boundaries

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - Timelntegration

Timelntegration
Order of time integration

Choose the order of time integration for the temporal discretization. Default behavior
is implicit time integration. However, it is possible to switch to an explicit or
semi-implicit (a.k.a. implicit-excplicit) scheme for velocity and temperature separately.

Note:
This only applies to LIQUID .

Available orders of time integration:

IMPLICIT

Implicit time integration.

V:EXPLICIT

Use fully explicit time integration for the velocity.

V:EXPIMP(0.5)

Mixed integration scheme for velocities. Any parameter value between 0 and 1 is allowed,
where 0 is fully explicit and 1 is fully implicit.

T:EXPLICIT

Use fully explicit time integration for temperature.
T:EXPIMP(0.5)

Mixed integration scheme for temperature. Any parameter value between 0 and 1 is allowed,
where 0 is fully ecplicit and 1 is fully implicit.

T:NONE

Turn off solving of temperature equations.

MESHFREE - InputFiles - USER_common_variables - KindOfProblem - TurbulenceModel

273

TurbulenceModel
Selection of turbulence model

Select turbulence model to turn it on. Or do not provide any turbulence model
to turn it off. So far, only the k-epsilon model for turbulence is supported.

Supported turbulence models:

[empty]
Do not provide any turbulence keyword to turn turbulence off.

TURBULENCE :k-epsilon

Use the k-epsilon model for turbulence, see KepsilonAlgorithm .

MESHFREE - InputFiles - USER_common_variables - Loops

3.1.17. Loops

loop over a block of lines in the input file

Use (nested loops) in the input file.

begin_loop{ "LoopVariable_i", iBegin, iStep, iEnd}

line that might contain &LoopVariable_i&

begin_loop{ "LoopVariable_j", jBegin, jStep, jEnd}

line that might contain &LoopVariable_i& and &LoopVariable_j&

begin_loop{ "LoopVariable_k", kBegin, kStep, kEnd}

line that might contain &LoopVariable_i& and &LoopVariable_j& and &LoopVariable_ k&
end_loop

end_loop

end_loop

The names &LoopVariable_i& , &LoopVariable_j& , and &LoopVariable_k& are free to be chosen by the user.
The values iBegin , iStep , iEnd , etc have to be integers.

Example: Place a raster of cubes in the geometry.

begin_boundary_elements{ }

begin_loop{ "iLoop",1,1,18}

begin_loop{ "jLoop",-2,1,2}

BND_cube &AliasForTheCubes& -1 -1 -1 1 1 1 rotate{ 0,0,0,[3*rand(1)],[3*rand(1)],[3*rand(1)]} scale{ &H_min& } offset{ [
&iLoop& *2* &H_min&],[&jLoop& *2* &H_min& 1,[0.6]}

end_loop

end_loop

end_boundary_elements

The cubes are randomly rotated and given a regular offset.

MESHFREE - InputFiles - USER_common_variables - MEMORIZE

3.1.18. MEMORIZE

memorize functionality

274

This functionality consists of writing memorize information and, in a subsequent simulation run, reading the saved
memorize information. Memorize information can only be generated for the point cloud (see MEMORIZE_Write). With the
help of a corresponding MEMORIZE_Read statement, the saved information can be read from the MEMORIZE_File and
the MEMORIZE_Header for different cycling modes.

A representative scenario: fill water from a bottle into different glass shapes and study the different splashing behavior.
Regradless of the shape of the glass, the water always comes out of the bottle in the same way (assuming perfect,
repeatable conditions on the way how the bottle is inclined in order to empty out). So, the way to run variations of the glass
geometry would be:
« do ONE simulation of the emptying process of the bottle,
« MEMORIZE the MESHFREE points at a defined reference plane/surface below the bottle (i.e. record the time
sequence of points going through the reference surface),
- in several SUBSEQUENT simulations (with varying glass geometries), ignore the bottle, instead read in the
memorized data such that they practically act as an inflow,
« in this way, save computation time on repeating numerics for any geometrical/parametrical variation.

In order to retain the results of the first simulation including the results of the MEMORIZE_Write statements, the results
folder is changed to "MySavePath_ MEMORIZERead" for subsequent simulation runs using MEMORIZE Read
statements. The saved memorize information (MEMORIZE_File and MEMORIZE_Header) is copied to this folder.

Note:

e Using both MEMORIZE_Write and MEMORIZE_Read statements in a simulation based on a previous
MEMORIZE_Write statement is only possible if they have different indices. In case the indices are identical, the
MEMORIZE_Write statement with this identical index is ignored.

« A valid MEMORIZE_Read simulation run with index-differing MEMORIZE_Write statement can not automatically be
used in a "third" simulation run with a new MEMORIZE_Read statement. For this to work, the SAVE_path in
USER_common_variables has to be adapted accordingly to "MySavePath__ MEMORIZERead". With this, a series
of simulations using writing-subsequent-reading of information is realizable.

« In case of RESTART , reload (see ComputationalSteering), or resuming (see checkpoint), the current memorize
configuration is compared to the previous one. If it does not agree in the necessary characteristics, the simulation is
aborted!

« Does currently not work in combination with the begin_save{ -environment. Please use only the standard saving
definitions, see SAVE .

«In case of an active MEMORIZE Read statement, therestart_pathis automatically set to
"MySavePath_MEMORIZERead" disregarding the definition in USER_common_variables .

List of members:

MEMORIZE_Read MEMORIZE_Read statements defined for the memorize files and headers
MEMORIZE_Write MEMORIZE_Write statements defined for the point cloud
MEMORIZE_File memorize file

MEMORIZE_Header memorize header file

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE File

MEMORIZE_File

memorize file

Writing of memorize files is triggered by MEMORIZE_Write statements. Each statement generates a MEMORIZE_File and
the corresponding MEMORIZE_Header with the following naming convention: "MyFileName.memorize_n.dat" and
"MyFileName.memorize_n.header", where n is the reference number of the MEMORIZE_Write statement.

The MEMORIZE_File is a human readable ascii file. The information defined by the corresponding MEMORIZE Write

statement is saved line by line for each point that was triggered. In the first column the time is saved automatically, in the
subsequent columns the additional values for the defined indices are saved.

275

Example:

MEMORIZE_Write (1) = (equn{ $memorize_trigger$ }, %MEMORIZE_DeletePoint% , %ind_x(1)% , [Y
%ind_x_displaced(1)% 1, %ind_x(2)% , [Y %ind_x_displaced(2)%], %ind_x(3)% , [Y %ind_x_displaced(3)%])

begin_equation{ $memorize_trigger$ }
if (Y %ind_x(1)% <-0.005) ::1.0
else :: 0.0

endif

end_equation

This generates a MEMORIZE_File of the following form.

0.512202E-03, -0.505818E-02, 0.000000E+00, -0.663885E-03
0.513439E-03, -0.502678E-02, 0.000000E+00, -0.877450E-03
0.513439E-03, -0.500344E-02, 0.000000E+00, 0.237234E-03
0.514677E-03, -0.513243E-02, 0.000000E+00, -0.610120E-03
0.514677E-03, -0.510678E-02, 0.000000E+00, -0.807786E-03
0.514677E-03, -0.504446E-02, 0.640051E-04, -0.418219E-03
0.514677E-08, -0.502776E-02, 0.000000E+00, -0.968895E-04
0.515915E-03, -0.505785E-02, 0.000000E+00, -0.102377E-02
0.515915E-03, -0.509953E-02, 0.000000E+00, -0.516220E-03
0.515915E-03, -0.505135E-02, 0.589291E-04, -0.704640E-03
0.515915E-03, -0.505183E-02, 0.000000E+00, 0.558770E-03
0.515915E-03, -0.511330E-02, 0.000000E+00, 0.180125E-03

The corresponding MEMORIZE_Header reads as follows (integers may vary for different MESHFREE versions!).

2

0 NOo W

Reading of previously generated memorize files is triggered by MEMORIZE_Read statements.

MESHFREE - InputFiles - USER _common_variables - MEMORIZE - MEMORIZE Header

MEMORIZE_Header

memorize header file

Writing of memorize header files is triggered by MEMORIZE_Write statements. Each statement generates a
MEMORIZE_File and the corresponding MEMORIZE_Header with the following naming convention:
"MyFileName.memorize_n.dat" and "MyFileName.memorize_n.header", where n is the reference number of the
MEMORIZE_Write statement.

The MEMORIZE_Headeris a human readable ascii file. The point cloud indices defined by the corresponding
MEMORIZE_Write statement including the time index are saved line by line.
Example:

MEMORIZE_Write (1) = (equn{ $memorize_trigger$ }, %MEMORIZE_DeletePoint% , %ind_x(1)% , [Y
%ind_x_displaced(1)%], %ind_x(2)% , [Y %ind_x_displaced(2)%], %ind_x(3)% , [Y %ind_x_displaced(3)%])

begin_equation{ $memorize_trigger$ }
if (Y %ind_x(1)% <-0.005) ::1.0
else :: 0.0

endif

end_equation

This generates a MEMORIZE_File of the following form.

276

0.512202E-03, -0.505818E-02, 0.000000E+00, -0.663885E-03
0.513439E-03, -0.502678E-02, 0.000000E+00, -0.877450E-03
0.513439E-03, -0.500344E-02, 0.000000E+00, 0.237234E-03
0.514677E-03, -0.513243E-02, 0.000000E+00, -0.610120E-03
0.514677E-03, -0.510678E-02, 0.000000E+00, -0.807786E-03
0.514677E-03, -0.504446E-02, 0.640051E-04, -0.418219E-03
0.514677E-08, -0.502776E-02, 0.000000E+00, -0.968895E-04
0.515915E-03, -0.505785E-02, 0.000000E+00, -0.102377E-02
0.515915E-03, -0.509953E-02, 0.000000E+00, -0.516220E-03
0.515915E-03, -0.505135E-02, 0.589291E-04, -0.704640E-03
0.515915E-03, -0.505183E-02, 0.000000E+00, 0.558770E-03
0.515915E-03, -0.511330E-02, 0.000000E+00, 0.180125E-03

aney wany sney wen

The corresponding MEMORIZE_Header reads as follows (integers may vary for different MESHFREE versions!). The
integers represent the MESHFREE internal integers of the Indices %ind...% stated in the corresponding MEMORIZE_Write
statement. The time is automatically written in the first column of the MEMORIZE_File and, thus, the corresponding integer
in the first line of the MEMORIZE_Header . Decoding of the integers can either be performed by manually counting in the
MEMORIZE_Write statement or by comparing with the information in the file "List_of_indices.log" in the hidden folder
".FPM_log___ FPM_ID="".

2

0 ~NOo W

Reading of previously generated memorize header files is triggered by MEMORIZE_Read statements.

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE Read

MEMORIZE_Read

MEMORIZE Read statements defined for the memorize files and headers

In USER_common_variables , the definition of a statement looks as follows:

MEMORIZE_Read (n) = (%MEMORIZE_Cycle% , m_cycle, t_cycle, %MEMORIZE_AdditionalFunctionManipulation% ,
OPTIONAL: %ind_xyz%, expression_xyz [, %ind_abc%, expression_abc ...])

The MEMORIZE_File and MEMORIZE_Header with reference number n are read line by line in each time step. If the
check time is inside the allowed time frame, the corresponding line in the MEMORIZE_File generates a new MESHFREE
point with the saved values. Thereby, the check time is defined by the MEMORIZE_Cycle configuration, i.e. m_cycle and
t_cycle .

m_cycle defines the number of cycles for reading the memorize information: 0 - infinite cycles, 1 - only one cycle, 2 - two
cycles, ...

t_cycle defines the cycling time, i.e. which time has to be added to the saved time in case of multiple cycles for reading the
memorize information. Its value has to be larger than 0.

After generation of 'a new point according to the saved memorize information, the
%MEMORIZE_AdditionalFunctionManipulation% definitions are evaluated. If present, the given expressions (

expression_xyz , expression_abc , ...) are saved for the indices (%ind_xyz% , %ind_abc% , ...). Equations are used to
define the expressions.

List of members:
%MEMORIZE_Cycle% cycle configuration MEMORIZE_Read handle

%MEMORIZE_AdditionalFunctionManipulation% additional function manipulation MEMORIZE_Read handle

277

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE Read -
%MEMORIZE_ AdditionalFunctionManipulation%

%MEMORIZE_AdditionalFunctionManipulation%
additional function manipulation MEMORIZE_Read handle

MEMORIZE_Read (n) = (%MEMORIZE_Cycle% , m_cycle, t_cycle, %MEMORIZE_AdditionalFunctionManipulation% ,
OPTIONAL: %ind_xyz%, expression_xyz [, %ind_abc%, expression_abc ...])

After generation of 'a new point according to the saved memorize information, the
%MEMORIZE_AdditionalFunctionManipulation% definitions are evaluated. If present, the given expressions (
expression_xyz , expression_abc , ...) are saved for the indices (%ind_xyz% , %ind_abc% , ...). Equations are used to
define the expressions.

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE Read -
%MEMORIZE_Cycle%

%MEMORIZE_Cycle%
cycle configuration MEMORIZE _Read handle

MEMORIZE_Read (n) = (%MEMORIZE_Cycle% , m_cycle, t_cycle, %MEMORIZE_AdditionalFunctionManipulation% ,
OPTIONAL: %ind_xyz%, expression_xyz [, %ind_abc%, expression_abc ...])

m_cycle defines the number of cycles for reading the memorize information:
« 0 - infinite cycles
« 1-only one cycle
o 2 -two cycles

t_cycle defines the cycling time, i.e. which time has to be added to the saved time in case of multiple cycles for reading
the memorize information. Its value has to be larger than 0.

m_cycle and t_cycle define the check time.

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE Write

MEMORIZE_Write
MEMORIZE_Write statements defined for the point cloud

Types of statements are:
1.) Deletion of points
2.) Retention of points

In USER_common_variables , the definition of a statement looks as follows:

MEMORIZE_Write (n) = (memorize_trigger_expression, %MEMORIZE_DeletePoint% , OPTIONAL: %ind_xyz%,
expression_xyz [, %ind_abc%, expression_abc ...])

MEMORIZE_Write (n) = (memorize_trigger_expression, %MEMORIZE_KeepPoint% , OPTIONAL: %ind_xyz%,
expression_xyz [, %ind_abc%, expression_abc ...])

For each MESHFREE point, the memorize_trigger_expression is evaluated. If it is larger than zero for the considered

point, the statement is triggered. In this case, the given expressions (expression_xyz , expression_abc , ...) are saved

with reference to the indices (%ind_xyz% , %ind_abc%, ...) in the MEMORIZE_File and MEMORIZE_Header with
278

reference number n , respectively. The current time is saved automatically as first index. Equations are used to define the
memorize_trigger_expression as well as the expressions for saving the indices.

List of members:

%MEMORIZE_DeletePoint% deletion of point MEMORIZE_Write handle
%MEMORIZE_KeepPoint% retention of point MEMORIZE_Write handle
MESHFREE - InputFiles - USER _common_variables - MEMORIZE - MEMORIZE Write -

%MEMORIZE_DeletePoint%

%MEMORIZE_DeletePoint%
deletion of point MEMORIZE_Write handle

MEMORIZE_Write (n) = (memorize_trigger_expression, %MEMORIZE_DeletePoint% , OPTIONAL: %ind_xyz%,
expression_xyz [, %ind_abc%, expression_abc ...])

For each MESHFREE point, the memorize_trigger_expression is evaluated. If it is larger than zero for the considered
point, the statement is triggered, the specified information of the point is saved wrt the given indices in the
MEMORIZE_File as well as MEMORIZE_Header and the point is deleted afterwards. Equations are used to define the
memorize_trigger_expression as well as the expressions for saving the indices.

MESHFREE - InputFiles - USER_common_variables - MEMORIZE - MEMORIZE Write -
%MEMORIZE_KeepPoint%

%MEMORIZE_KeepPoint%
retention of point MEMORIZE_Write handle

MEMORIZE_Write (n) = (memorize_trigger_expression, %MEMORIZE_KeepPoint% , OPTIONAL: %ind_xyz%,
expression_xyz [, %ind_abc%, expression_abc ...])

For each MESHFREE point, the memorize_trigger_expression is evaluated. If it is larger than zero for the considered
point, the statement is triggered, the specified information of the point is saved wrt the given indices in the
MEMORIZE_File as well as MEMORIZE_Header and the point is retained as it is. Equations are used to define the
memorize_trigger_expression as well as the expressions for saving the indices.

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS

3.1.19. MONITORPOINTS

monitor points due to user-defined conditions

Pure postprocessing points can be created by user-defined conditions in order to better understand the computed flow.
These monitorpoints do not take part in the numerics of the simulation, they are simply attached to the solution
and carry useful results.

Monitor points can be created by MONITORPOINTS_CREATION , stopped by MONITORPOINTS _STOP , and deleted by
MONITORPOINTS_DELETION . The latter is important regarding the performance of a simulation.

Information of monitor points can be saved by SAVE_MONITOR_ITEM .
Information of monitor points, that have been created at boundary elements by

%MONITORPOINTS _CREATION_AtBoundary% , can be mapped onto the corresponding boundary elements by
279

BE_MONITOR_ITEM or directly mapped and saved by SAVE_BE_MONITOR_ITEM .

List of members:

BE_MONITOR_ITEM BE monitor item

MONITORPOINTS_CREATION create monitor points due to user-defined conditions
MONITORPOINTS_DELETION delete existing monitor points by user-defined conditions
MONITORPOINTS_STOP stop existing monitor points by user-defined conditions
SAVE_BE_MONITOR_ITEM monitor item to be saved per BE element for visualization (MP)
SAVE_MONITOR_ITEM monitor item to be saved for visualization (MP)

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
BE_MONITOR_ITEM

BE_MONITOR_ITEM

BE monitor item

The syntax of BE_MONITOR_ITEM is analogous to the one of SAVE_BE_MONITOR_ITEM , just omit the
"DescriptionText". It allows to evaluate monitor points per boundary element, but does not save the results. However, it can
be referenced by BEmon() in equations.

The syntax is equivalent to SAVE_BE_MONITOR_ITEM .

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS_CREATION

MONITORPOINTS_CREATION

create monitor points due to user-defined conditions

Create a monitor point out of an existing MESHFREE point with MAT -flag $Material$ if a given functional (or a sequence
of functionals) is positive.
Each functional is a typical RightHandSideExpression in the scope of USER_common_variables .

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_AtBoundary% , Functionall,
OPTIONAL:{%AND%,%0R%}, Functional2, ...)

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_Inside% , Functionall, OPTIONAL.:
{%AND%,%0OR%}, Functional2, ...)

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_IrreducibleFPMpoint% ,
Functional1, OPTIONAL:{%AND%,%0R%}, Functional2, ...)

MONITORPOINTS_CREATION ($Material$) = (
%MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary% , $iPostprocessFlag$, OPTIONAL:
{%AND%,%0OR%}, Functional2, ...)

Each monitor point obtains a unique marker in %ind_MARKER% . Their creation time is reported in %ind_st% .
Furthermore, they inherit the values of the creating MESHFREE points.

Note: By default, the monitor points only store a reduced number of Indices . However, all Indices occurring in defined
SAVE_MONITOR_ITEM , BE_MONITOR_ITEM , or SAVE_BE_MONITOR_ITEM are stored additionally.

At creation time, dedicated function values can be provided to the monitor points by

280

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.MONITORPOINTS

MONITORPOINTS_CREATION_FunctionEvaluation .
If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is created, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive

value.

Monitor points are not supported by the SAVE_formats ASCIl and ERFHDF5 .

List of members:

%MONITORPOINTS_CREATION_AtBoundary% create monitor points at the boundary due to user-defined
conditions
%MONITORPOINTS_CREATION_Inside% create monitor points not attached to a boundary due to user-

defined conditions

%MONITORPOINTS_CREATION_ IrreducibleFPMpoint mark MESHFREE points to be irreducible
%

%MONITORPOINTS_CREATION_PenetrationOfBlindAn create monitor points if MESHFREE points penetrate
dEmptyBoundary% BND_BlindAndEmpty boundary

MONITORPOINTS_CREATION_FunctionEvaluation provide dedicated function values at creation time to the
monitor point

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS_CREATION - %MONITORPOINTS CREATION_AtBoundary%

%MONITORPOINTS_CREATION_AtBoundary%

create monitor points at the boundary due to user-defined conditions

Create a monitor point out of an existing MESHFREE point with MAT -flag $Material$, if a given functional (or a sequence
of functionals) is positive,
and attach it to the corresponding boundary.

MONITORPOINTS_CREATION ($Material$)

= (%MONITORPOINTS_CREATION_AtBoundary% , Functionald,
OPTIONAL:{%AND%,%0OR%}, Functional2, ...)

Note: The monitor points are attached to the boundary and will also move with it if the boundary moves.

If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is created, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive
value.

Example: Create a monitor point if a MESHFREE point supercedes a pressure criterion or a temperature criterion.

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_AtBoundary% , [Y %ind_p% +Y
%ind_p_dyn% > 10000], %OR%, [Y %ind_T% > 100])

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS_CREATION - %MONITORPOINTS_ CREATION_Inside%

%MONITORPOINTS_CREATION_Inside%

create monitor points not attached to a boundary due to user-defined conditions

Create a monitor point out of an existing MESHFREE point with MAT -flag $Material$, if a given functional (or a sequence
of functionals) is positive,

281

but do not attach it to the boundary.

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_Inside% , Functionall, OPTIONAL.:
{%AND%,%0OR%}, Functional2, ...)

If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is created, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive
value.

Example: Create a monitor point if a MESHFREE point superceeds a pressure criterion and is an interior point.

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_Inside% , [Y %ind_p% +Y
%ind_p_dyn% > 10000], %AND%, [Y%ind_kob%<2])

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS_CREATION - %MONITORPOINTS CREATION_IrreducibleFPMpoint%

%MONITORPOINTS_CREATION_IrreducibleFPMpoint%
mark MESHFREE points to be irreducible

A MESHFREE point with MAT -flag $Material$ is flagged such that MESHFREE cannot cluster it with another
MESHFREE point if the point cloud becomes dense.
However, all other reduction operations are executed such as:
- removal after boundary crossing (see %ind_dtb%)
« removal due to isolation status invoked by COMP_IsolatedParticles_MinNbOfNeigh and
COMP_IsolatedParticles_MinNbOfInteriorNeigh

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_ IrreducibleFPMpoint% ,
Functional1, OPTIONAL:{%AND%,%0R%}, Functional2, ...)

The MESHFREE point is flagged with a random positive value found in %ind_MARKER% . The point can be unflagged by
the MONITORPOINTS_DELETION statement.
The user can define a dedicated flag using the MONITORPOINTS_CREATION_FunctionEvaluation statement.

If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is created, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive
value.

Example: Flag MESHFREE points which were just injected at the inflow at time smaller than 0.1 seconds.

MONITORPOINTS_CREATION ($Material$) = (%MONITORPOINTS_CREATION_IrreducibleFPMpoint% , [Y
%ind_OrganizePC(1)% = 6], %AND%, [Y %ind_time% < 0.1])

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS CREATION -
%MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary%

%MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary%
create monitor points if MESHFREE points penetrate BND_BlindAndEmpty boundary

It can be useful to monitor MESHFREE point penetrations through a %BND_BlindAndEmpty% boundary since this
provides a nice visualization of the impact locations.

Usually, the user would have to create an %INTEGRATION_FLUX% around this boundary. The current option, however,
does not sum up but localize the impact events.

282

MONITORPOINTS_CREATION ($Material$) = (
%MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary% , $iPostprocessFlag$, OPTIONAL:
{%AND%,%0R%}, Functional2, ...)

A monitor point is created at the location of penetration of an existing MESHFREE point with MAT -flag $Material$ through
the %BND_BlindAndEmpty%

boundary with POSTPROCESS -flag $iPostprocessFlag$. The monitor point is mapped to the penetrated boundary
element and further moved with it.

Note: The boundary has to be flagged by IDENT%BND_BIlindAndEmpty% and by a POSTPROCESS flag which is
referenced in the
MONITORPOINTS_CREATION statement.

Additional functionals can either be added by %AND% or by %0OR% . A monitor point is created, if the logical convolution
of the functionals
and the POSTPROCESS -flag is true. A functional is true, if it delivers a positive value.

Example: Create a monitor point if a MESHFREE point penetrates the %BND_BlindAndEmpty% boundary with
POSTPROCESS -flag iPP at time larger than 10 seconds.

MONITORPOINTS_CREATION ($Material$) = (
%MONITORPOINTS_CREATION_PenetrationOfBlindAndEmptyBoundary% , iPP , %AND%%, [Y %ind_time% > 10.0])

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS _CREATION - MONITORPOINTS CREATION_FunctionEvaluation

MONITORPOINTS CREATION_FunctionEvaluation
provide dedicated function values at creation time to the monitor point

At the moment of creation of a monitor point, give values to some predefined indices of the monitor point. This is optional.
In general, the values of the mother-MESHFREE point will be inherited to the monitor point.
Syntax:

MONITORPOINTS_CREATION_FunctionEvaluation ($Material$) = (%ind_xyz%, expression [,%ind_abc%, expression2
)

The indices %ind_abc% and %ind_xyz% are classical MESHFREE -index variables as given in Indices .

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS DELETION

MONITORPOINTS_DELETION

delete existing monitor points by user-defined conditions

Delete a monitor point with MAT -flag $Material$ if a given functional (or a sequence of functionals) is positive.
MONITORPOINTS_DELETION ($Material$) = (Functionall, OPTIONAL:{%AND%,%0R%)}, Functional2, ...)

If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is deleted, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive
value.

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
MONITORPOINTS_STOP

MONITORPOINTS_STOP
283

stop existing monitor points by user-defined conditions

Stop a monitor point with MAT -flag $Material$ if a given functional (or a sequence of functionals) is positive.
MONITORPOINTS_STOP ($Material$) = (Functionall, OPTIONAL:{%AND%,%0R%}, Functional2, ...)

Note: If a monitor point is stopped, there is yet no way to let it move again.

If a sequence of functionals is used, the functionals can either be combined by %AND% or by %0OR% .
A monitor point is created, if the logical convolution of the functionals is true. A functional is true, if it delivers a positive
value.

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
SAVE_BE_MONITOR_ITEM

SAVE_BE_MONITOR_ITEM

monitor item to be saved per BE element for visualization (MP)

See SAVE_BE_MONITOR_ITEM .

MESHFREE - InputFiles - USER_common_variables - MONITORPOINTS -
SAVE_MONITOR_ITEM

SAVE_MONITOR_ITEM

monitor item to be saved for visualization (MP)

See SAVE_MONITOR_ITEM .

MESHFREE - InputFiles - USER_common_variables - MOVE

3.1.20. MOVE

move parts of the boundary by an explicit statement

The movement of parts of the boundary is defined by explicit statements. For details see below.

MOVE (SMOVE_index1$) = (%MOVE_position% , xPosition, yPosition, zPosition)

MOVE ($MOVE_index2$) = (%MOVE_rotation% , xCenter, yCenter, zCenter, xOmega, yOmega, zOmega)
MOVE ($MOVE_index3$) = (%MOVE_velocity% , xVelocity, yVelocity, zZVelocity)

MOVE (SMOVE_index4$) = (%MOVE_translation% , xDiff, yDiff, zDiff)

MOVE (SMOVE_index5$) = (%MOVE_rigid% ,

xCenterlnit, yCenterlInit, zCenterlnit,

Mass,

xxInertia, xylnertia, xzlnertia, yxInertia, yylnertia, yzInertia, zxInertia, zylnertia, zzlnertia,

xVelocitylnit, yVelocitylnit, zVelocityInit,

xOmegalnit, yOmegalnit, zZOmegalnit,

xForce, yForce, zForce,

xMomentum, yMomentum, zMomentum)

MOVE (SMOVE_index6$) = (%MOVE_TranslationRotation% , xCenterInit, yCenterlnit, zCenterlnit,
$MOVE_IndexForCenter$, xOmega, yOmega, zOmega)

MOVE (SMOVE_index7$) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_RefMove$)
MOVE ($MOVE_index8$) = (%MOVE_concat% , SMOVE_index_first$, SMOVE_index_second$)
MOVE (SMOVE_index9%) = (%MOVE_vertuschka% , aExtension, bExtension, omega)

MOVE ($SMOVE_index10$) = (%MOVE_ElasticBeam% , $SMOVE_FromWhereToTakeForces$)
MOVE ($MOVE_index11$) = (%MOVE_ReducedModel% , PressureTerm)

Py

Note:
284

e The number of MOVE statements is currently limited to 100.
« In many cases, data caching can be invoked by the optional parameter %MOVE_InvokeDataCaching% yielding a

huge performance boost.

List of members:
%MOVE_concat%

%MOVE_ElasticBeam%

%MOVE_InvokeDataCaching%
%MOVE_position%

%MOVE_ ProjectionOfMovementOfAnother
Part%

%MOVE_ReducedModel%

%MOVE_rigid%

%MOVE_ rotation%
%MOVE_translation%
%MOVE_TranslationRotation%
%MOVE_velocity%

%MOVE_vertuschka%

RIGIDBODY

MESHFREE -

combine two MOVE-statements

special setting for a beam-like structure that moves like a damped elastic
beam

Data Caching for Move Statements (optional, but recommended)
movement based on a sequence of positions

follow the movement of another geometry part

special setting for a reduced model (such as rings, beams, etc)

rigid body movement (translation and rotation) due to acting forces of the
flow

rotation movement

movement by given translation

movement by given translation and rotation
movement by given velocity

special setting for VERTUSCHKA (specific scientific laboratory test in
geomechanics)

rigid body movement (translation and rotation) due to acting forces of the
flow

MOVE -

InputFiles -

%MOVE_ElasticBeam%

USER_common_variables -

%MOVE_ElasticBeam%

special setting for a beam-like structure that moves like a damped elastic beam

MOVE ($SMOVE_index$) = (%MOVE_ElasticBeam% , $SMOVE_FromWhereToTakeForces$)

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_FromWhereToTakeForces$ will contribute

to the force

computation/projection of the elastic beam driving the movement of the geometry with MOVE -flag $MOVE_index$.

MOVE ($MOVE_index$) = (%MOVE_ElasticBeam% , $SMOVE_FromWhereToTakeForces$)

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_FromWhereToTakeForces$ will contribute

to the force

computation/projection of the elastic beam driving the movement of the geometry with MOVE -flag $MOVE_index$.

285

MOVE ($MOVE_index$) = (%MOVE_ElasticBeam% , $SMOVE_FromWhereToTakeForces$)

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_FromWhereToTakeForces$ will contribute
to the force
computation/projection of the elastic beam driving the movement of the geometry with MOVE -flag $MOVE_index$.

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_InvokeDataCaching%

%MOVE_InvokeDataCaching%
Data Caching for Move Statements (optional, but recommended)

With the introduction of ORGANIZE USER_update_boundary particles_Version = 3 we compute the rotation matrix
M:;Lll and the translation vector b?rt-}:,s such that the movement from the old to the new position of a geometry node is
computed by

XEH—I = M:}t;tl 'X? + b?r'tvjr-m

For any rigid body movement, the translation and rotation items are unique, so the matrix and vector have to be computed

only once per timestep for all geometry points.

Thus, it is recommended to also apply the option %MOVE_ InvokeDataCaching% to the Move statement in order to avoid
unnecessary recomputation of M:}(jgl and bﬁﬂ;i__} . This is possible if the movement is not dependent on space variables
and only dependent on time.

Note: MESHFREE does not check for space dependence because it would mean to check every node point of the
geometry in every time cycle. This check could be costly depending on the geometry model.

See the definition of the individual MOVE Statements on how to incorporate %MOVE_InvokeDataCaching% .

MESHFREE - InputFiles - USER_common_variables - MOVE -
%MOVE_ ProjectionOfMovementOfAnotherPart%

%MOVE_ProjectionOfMovementOfAnotherPart%
follow the movement of another geometry part

MOVE ($MOVE_index$) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_RefMove$)

The movement of the geometry with MOVE -flag $MOVE_RefMove$ is mapped to the geometry
with MOVE -flag $MOVE_index$ by a perpendicular projection.

Example:
begin_alias{ }
""A1" =" ... MOVE$SMOVE_A1$... "' # definition of alias A1
""A2" =" .. MOVE$SMOVE_A2$... "' # definition of alias A2
end_alias

MOVE (SMOVE_A1$) = (%MOVE_TranslationRotation%, ...)
MOVE ($MOVE_A2$) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_A1$)

MOVE ($MOVE_index$) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_RefMove$)

286

The movement of the geometry with MOVE -flag SMOVE_RefMove$ is mapped to the geometry
with MOVE -flag $MOVE_index$ by a perpendicular projection.

Example:
begin_alias{ }
""A1" =" ... MOVESMOVE_A1$... "' # definition of alias A1
""A2" =" ... MOVESMOVE_A2$... "' # definition of alias A2
end_alias

MOVE ($MOVE_A1$) = (%MOVE_TranslationRotation%, ...)
MOVE ($MOVE_A2$%) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_A1$)

MOVE (SMOVE_index$) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_RefMove$)

The movement of the geometry with MOVE -flag $MOVE_RefMove$ is mapped to the geometry
with MOVE -flag $SMOVE_index$ by a perpendicular projection.

Example:
begin_alias{ }
""A1" =" ... MOVE$SMOVE_A1$... "' # definition of alias A1
""A2"=".. MOVE$SMOVE_A2$... "' # definition of alias A2
end_alias

MOVE ($MOVE_A1$) = (%MOVE_TranslationRotation%, ...)
MOVE ($MOVE_A2$%) = (%MOVE_ProjectionOfMovementOfAnotherPart% , SMOVE_A1$)

MESHFREE - InputFiles - USER _common_variables - MOVE - 9%MOVE_ReducedModel%

%MOVE_ReducedModel%
special setting for a reduced model (such as rings, beams, etc)

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_index$ will be moved due to the dynamics of
the reduced model.
The reduced model needs forces which are interpolated at the nodes of the reduced model geometry.

MOVE (SMOVE_index$) = (%MOVE_ReducedModel% , PressureTerm)

PressureTerm: any type of RightHandSideExpression that tells what term to interprete as the pressure to be projected
onto the structure of the reduced model

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_index$ will be moved due to the dynamics of
the reduced model.
The reduced model needs forces which are interpolated at the nodes of the reduced model geometry.

MOVE ($MOVE_index$) = (%MOVE_ReducedModel% , PressureTerm)

PressureTerm: any type of RightHandSideExpression that tells what term to interprete as the pressure to be projected
onto the structure of the reduced model

All MESHFREE points which belong to a geometry with MOVE -flag $MOVE_index$ will be moved due to the dynamics of
the reduced model.
The reduced model needs forces which are interpolated at the nodes of the reduced model geometry.

MOVE ($MOVE_index$) = (%MOVE_ReducedModel% , PressureTerm)

287

PressureTerm: any type of RightHandSideExpression that tells what term to interprete as the pressure to be projected
onto the structure of the reduced model

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_TranslationRotation%

%MOVE_TranslationRotation%
movement by given translation and rotation

MOVE ($MOVE_index$) = (%MOVE_TranslationRotation% , xCenterlnit, yCenterlnit, zCenterlnit, S(MOVE_Center$,
xOmega, yOmega, zOmega, OPTIONAL:%MOVE_VirtualRotation% , OPTIONAL:%MOVE_InvokeDataCaching%)
MOVE ($MOVE_Center$) = (%MOVE _...%, AnythingCanBeHere, ...)

The vector (xCenterlnit, yCenterlnit, zCenterlnit) represents the initial center of rotation of the geometry with
MOVE_Flag $MOVE_index$.

This center of rotation is then translated by the movement described in an additional MOVE -statement (here:
$MOVE_Center$) which is compulsory.

The geometry is translated with the movement defined in $MOVE_Center$. On top of it, a rigid rotation about the current
center
of rotation with rotation vector (xOmega , yOmega , zOmega) is applied.

Example: A rolling wheel can be modeled by

MOVE ($MOVE_index$) = (%MOVE_TranslationRotation% , 0, 0, 1, SMOVE_Center$, 0, 6.2831852, 0)
MOVE ($MOVE_Center$) = (%MOVE_velocity% , 6.2831852, 0, 0)

A wheel with radius 1m, the center of which is originally at (0, 0, 1), moves forward in x-direction with a speed of
6.2831852m/s.

The rotation is put accordingly to (0, 6.2831852, 0) such that it turns out to be a rolling movement with 1 rotation per
second.

Further options:
1.) In some cases, for instance for deformed tyres, the user does not actually want to rotate the tyre, but only apply
the
rotation boundary condition to the flow. If the tyre would rotate, the deformation would rotate as well, such that
it would have to be recomputed in every time cycle.

MOVE ($MOVE_index$) = (%MOVE_TranslationRotation% , 0, 0, 1, SMOVE_Center$, 0, 6.2831852, 0,
%MOVE_VirtualRotation%)
MOVE (SMOVE_Center$) = (%MOVE_velocity% , 6.2831852, 0, 0)

%MOVE_VirtualRotation% lets the tyre translate with SMOVE_Center$ but not rotate. For the velocity boundary
conditions, however,
the rotational speed is provided. That especially refers to the following BC_v -conditions:

o %BND_wall_nosl%

o %BNDiwaII%

o %BND_slip%

2.) For big data sets (geometry) whose movement depends on time only (and not on space) the performance can be

improved by data caching.

MOVE ($MOVE_index$) = (%MOVE_TranslationRotation% , 0, 0, 1, SMOVE_Center$, 0, 6.2831852, 0, ... ,
%MOVE_InvokeDataCaching%)

%MOVE_InvokeDataCaching% : Data caching is recommended for performance reasons if the movement is not
dependent

288

on space variables and only dependent on time.
Note: MESHFREE does not check for space dependence because it would mean to check every node point of the

geometry
in every time cycle. This check could be costly depending on the geometry model.

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_concat%

%MOVE_concat%
combine two MOVE-statements

MOVE ($MOVE _index_first$) = ...
MOVE ($MOVE_index_second$) = ...
MOVE ($MOVE_combined$) = (%MOVE_concat% , SMOVE_index_first$, SMOVE_index_second$)

The geometry with MOVE -flag $MOVE_combined$ moves based on the combination of the movement for MOVE -flag
$MOVE_index_first$ and the one with MOVE -flag $MOVE_index_second$. The order of the MOVE -statements does
not matter as the computation of displacements and the actual changes in position are decoupled. So, based on the
current positions the predicted movements are summed and at the beginning of the next timestep they are executed.

MESHFREE - InputFiles - USER_common_variables - MOVE - 9%MOVE_position%

%MOVE_position%

movement based on a sequence of positions

MOVE ($MOVE_index$) = (%MOVE_position% , xPosition, yPosition, zPosition,
OPTIONAL:%MOVE_InvokeDataCaching%)

xPosition, yPosition, zPosition: The time-dependent sequences of x-, y-, and z-coordinates
form a sample path along which the whole geometry with MOVE -flag $MOVE_index$ moves along.

Example 1:
MOVE ($MOVE_index$) = (%MOVE_position% , [sin(Y %ind_time%)], [-cos(Y %ind_time%)], 0)

This forms a movement of the geometry with MOVE -flag $MOVE_index$ on a circular curve.

Example 2:

MOVE ($MOVE_index$) = (%MOVE_position% , curve{ $CURVE_xPos$ }, curve{ SCURVE_yPos$ }, curve{
$CURVE_zPos$ })

The curves implement the time sequence of the x-, y-, and z-component of the movement.

%MOVE_InvokeDataCaching% : Data caching is recommended for performance reasons if the movement is not
dependent
on space variables and only dependent on time.

Note: MESHFREE does not check for space dependence because it would mean to check every node point of the

geometry
in every time cycle. This check could be costly depending on the geometry model.

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_rigid%

289

%MOVE._rigid%

rigid body movement (translation and rotation) due to acting forces of the flow

See RIGIDBODY .

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_rotation%

%MOVE_rotation%

rotation movement

Rotation of the geometry with MOVE -flag $MOVE_index$:

MOVE ($MOVE_index$) = (%MOVE_rotation% , xCenter, yCenter, zCenter, xOmega, yOmega, zOmega,
OPTIONAL:%MOVE_InvokeDataCaching%)

(xCenter , yCenter , zCenter) is the rotation center which can be
modeled as typical RightHandSideExpression , i.e. Equations as well as Curves . Its unit is meters.

The rotation vector is given by (xOmega , yOmega , zOmega). Its unit is 1/s (radians per second).
If the magnitude of this vector takes a value of 6.2831852, then one revolution per second is prescribed.

The direction of (xOmega , yOmega , zOmega) represents the rotation axis.

%MOVE_InvokeDataCaching% : Data caching is recommended for performance reasons if the movement is not
dependent

on space variables and only dependent on time.

Note: MESHFREE does not check for space dependence because it would mean to check every node point of the

geometry
in every time cycle. This check could be costly depending on the geometry model.

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_translation%

%MOVE _translation%

movement by given translation

MOVE (SMOVE_index$) = (%MOVE_translation% , xDiff, yDiff, zDiff, OPTIONAL:%MOVE_InvokeDataCaching%)

The vector (xDiff , yDiff , zDiff) represents the current translation and direction of the geometry
withMOVE-flag$MOVE_index$. The wunit is meters. The components can be modeled as typical
RightHandSideExpression , i.e.

Equations as well as Curves .

%MOVE_InvokeDataCaching% : Data caching can be invoked if the given velocity is not dependent on space variables,
but only on time.

Note: MESHFREE does not check for space dependence because it would mean to check every node point of the

geometry
in every time cycle. This check could be costly depending on the geometry model.

MESHFREE - InputFiles - USER_common variables - MOVE - %MOVE_velocity%

%MOVE_velocity%

movement by given velocity
290

MOVE ($MOVE_index$) = (%MOVE_velocity% , xVelocity, yVelocity, zVelocity,
OPTIONAL:%MOVE_InvokeDataCaching%)

The vector (xVelocity , yVelocity , zVelocity) represents the current translation speed and direction of the geometry
with MOVE -flag $MOVE_index$. The unit is m/s. The components can be modeled as typical RightHandSideExpression
,i.e.

Equations as well as Curves .

%MOVE_ InvokeDataCaching% : Data caching is recommended for performance reasons if the rotation is not dependent
on space variables and only dependent on time.

Note: MESHFREE does not check for space dependence because it would mean to check every node point of the

geometry
in every time cycle. This check could be costly depending on the geometry model.

MESHFREE - InputFiles - USER_common_variables - MOVE - %MOVE_vertuschka%

%MOVE_vertuschka%
special setting for VERTUSCHKA (specific scientific laboratory test in geomechanics)

The geometry with MOVE -flag $SMOVE_index$ is moved according to an ellipsoidal deformation.
MOVE ($MOVE_index$) = (%MOVE_vertuschka% , aExtension, bExtension, omega)

Formulation for original ellipsoid:

T = GExtension * €z - COS(gamma) + bExtension * €y * SIn(gamma)

aExtension = agytension
bExtension = bg,;ension
omega = rotation speed in 1/s

The geometry with MOVE -flag $SMOVE_index$ is moved according to an ellipsoidal deformation.
MOVE ($MOVE_index$) = (%MOVE_vertuschka% , aExtension, bExtension, omega)

Formulation for original ellipsoid:

T = GExtension * €z - COS(gamma) + bExtension * €y * SIn(gamma)

aExtension = @Extension
bExtension = bgension
omega = rotation speed in 1/s

The geometry with MOVE -flag $SMOVE_index$ is moved according to an ellipsoidal deformation.
MOVE ($MOVE_index$) = (%MOVE_vertuschka% , aExtension, bExtension, omega)

Formulation for original ellipsoid:

T = AExtension * €z * CO8(gamma) + bExtension * €y $In(gamma)

291

aExtension = agytension
bExtension = pg,iension
omega = rotation speed in 1/s

MESHFREE - InputFiles - USER_common_variables - MOVE - RIGIDBODY

RIGIDBODY

rigid body movement (translation and rotation) due to acting forces of the flow

The geometry with MOVE -flag $SMOVE_index$ moves due to the acting forces of the flow as well as
additional outer forces and momentum.

In particular, we solve the ODE of movement of rigid rotating bodies:

E (XCOG) = Vcoao

d
E (?TL . V(JUG) = Ff!uid + Fgrm;i.‘.y + Fouter + Feontact

d
- (I : W(Jf)(:‘) = -Ell”ff!uid + Mouter + Meontact
dt

The variables are

o t :time

« mm :mass of the body,

e Xcog - position of the center of gravity of the body ; this can be interrogated by the function xCOG() ,

e Vaog : velocity of the center of gravity; this can be interrogated by the function vCOG() ,

» Fuiq : forces acting from the fluid onto the body (automatically measured and applied!!!), to be requested by the
function FCOG() ,

o Fyravity - the gravity forces deduced from the definition of gravity of the appropriate material ,

e F.ier - additional / outer forces other than fluid or gravity / body forces ,

« T :tensor of rotational inertia ,

e wooe - rotational speed about the center of gravity of the body, to be requested by the function omCOG() ,

» Myguia - moment about the center of gravity (automatically measured and applied!!!!), this can be inquired by the
function MCOG() ,

o Myyier - OUter moments other than the moment applied by the fluid ,

o Frpntact: Meontacr - if RIGIDBODY_UseCollisionModel = true , then MESHFREE detects the body-body- and
body-boundary-intersections and automatically applies contact forces and moments .

Remark : the items above have to be initialized in the MOVE statement (see below)

MOVE ($MOVE_index$) = (%MOVE_rigid% ,

xCenterlnit, yCenterlnit, zCenterlnit,

Mass,

xxInertia, xylnertia, xzlnertia, yxInertia, yylnertia, yzInertia, zxInertia, zylnertia, zzInertia,

xVelocitylnit, yVelocitylnit, zVelocityInit,

xOmegalnit, yOmegalnit, zOmegalnit,

xForce, yForce, zForce,

xMomentum, yMomentum, zMomentum,

OPTIONAL:xxdFdulnit, xydFdulnit, xzdFdulnit, yxdFdulnit, yydFdulnit, yzdFdulnit, zxdFdulnit, zydFdulnit, zzdFdulnit ,
OPTIONAL:xxdGdOmega, xydGdOmega, xzdGdOmega, yxdGdOmega, yydGdOmega, yzdGdOmega, zxdGdOmega,
zydGdOmega, zzdGdOmega)

 (xCenterlnit , yCenterlnit , zCenterlnit): initial center of gravity Xcog

» Mass : mass of rigid body

« (xxInertia, xylnertia , xzlnertia, yxlnertia, yylnertia, yzlnertia, zxInertia, zylnertia, zzlnertia): initial tensor
of inertia T

« (xVelocitylnit , yVelocitylnit , zVelocitylnit): initial velocity vcog

« (xOmegalnit , yOmegalnit , zOmegalnit): inital rotational state wcog

292

(xForce , yForce , zForce): outer forces F,,;qr
(xMomentum , yMomentum , zMomentum): outer momentum Af,
(

ouwtler

xxdFdulnit, xydFdulnit, xzdFdulnit, yxdFdulnit, yydFdulnit, yzdFdulnit, zxdFdulnit, zydFdulnit, zzdFdulnit): initial
guess of dF/du (tensor)
e (xxdGdOmega, xydGdOmega, xzdGdOmega, yxdGdOmega, yydGdOmega, yzdGdOmega, zxdGdOmega,
zydGdOmega, zzdGdOmega): initial guess of dG/dOmega (tensor)

MESHFREE - InputFiles - USER_common_variables - NumericalControl

3.1.21. NumericalControl

numerical control options
See the list of options below.

List of members:
CoeffDtVirt per MESHFREE point definition of the virtual time step size
ENFORCE_min_max set lower and upper bound for any MESHFREE variable

ENFORCE_min_max_RejectLinearSo rejection of the solution of a sparse linear system if minimum-maximum criteria are
lution not fulfilled

MESHFREE - InputFiles - USER_common_variables - NumericalControl - CoeffDtVirt

CoeffDtVirt
per MESHFREE point definition of the virtual time step size

Define the parameter A,,;,, in VirtualTimeStepSize per MESHFREE point with CHAMBER -index iChamber :
CoeffDtVirt (iChamber) = (LocalValue)

LocalValue is a RightHandSideExpression .

A previous version implements a constant, chamber-wise definition, see COEFF_dt_virt and VirtualTimeStepSize .
If a CoeffDtVirt definition exists for a MESHFREE point, then the original COEFF_dt_virt is neglected.

Example:
CoeffDtVirt (1) = [Y %ind_dt_local% /Y %ind_di% *0.1]

MESHFREE - InputFiles - USER_common_variables - NumericalControl - ENFORCE_min_max

ENFORCE_min_max
set lower and upper bound for any MESHFREE variable

In order to assure some minimum and maximum conditions, the user is able to restrict the solution to any MESHFREE
variable by:

ENFORCE_min_max ($Material$,%ind_Variable%) = (minNotToBeUndercut, maxNotToBeExceeded,
OPTIONAL:SlopeNotToBeExceeded)

MESHFREE simply cuts the solution of the given variable after a time step is completed.

293

minNotToBeUndercut: MESHFREE cuts the function values in the sense f; = max(f;, minNotToBeUndercut)
maxNotToBeExceeded: MESHFREE cuts the function values in the sense f; = min(f;, maxNotToBeExceeded)
SlopeNotToBeExceeded: MESHFREE smoothes the function such that ||V f||2 < SlopeNotToBeExceeded
Equivalent to CODI_min_max .

See also ENFORCE_min_max_RejectLinearSolution .

MESHFREE - InputFiles - USER_common_variables - NumericalControl -
ENFORCE_min_max_RejectLinearSolution

ENFORCE_min_max_RejectLinearSolution
rejection of the solution of a sparse linear system if minimum-maximum criteria are not fulfilled

In USER_common_variables , the statement

ENFORCE_min_max_RejectLinearSolution ($Materiallndex$, %ind_Entity%) = (MinimumNotToBeSubceeded,
MaximumNotToBeExceeded)

leads to a pointwise definition of the accepted minima and maxima of the solution to a sparse linear system.
If the given minima or maxima are exceeded for one or more points, then the whole linear solution is rejected for the
current time step.

Warning: Currently, only the pressure entities LIQUID.%ind_p%, %ind_p_dyn% , and %ind_c% (hydrostatic, dynamic, and
correction pressures) are supported.

Equivalent to CODI_min_max_RejectLinearSolution .

See also ENFORCE_min_max .

MESHFREE - InputFiles - USER_common_variables - ODE

3.1.22. ODE

solver for ordinary differential equations (ODE)

Let us solve ordinary differential equations (ODE) of the form

dy
A— + BY = Q,
= T Q,

where Y is the unknown variable to be integrated and A, B, () are user given.

The numerical scheme of second order in time, which is used in MESHFREE to solve this type of equations, is Crank-
Nicolson-like.

Yﬂ+1 o Yﬂ,

n+1 ny
(AT 4+ A™) X

+ (Bn+lyn+l + Bny—n) — Qﬂ.+1 +Qn

The resulting equation for the unknown is:

1

Yﬂ.-‘rl —
ﬁ(}l“*‘l +An) + Bn+l

i (Qn+l + Qn + (i(ATH_l + An) - Bn) . Yn)

In USER_common_variables the n-th ODE to be solved is defined by:

294

ODE (n) = (A, B,Q, YO)

A , B, Q: parameters in the model equation which are subject to RightHandSideExpression
(Equations , Curves , etc. which also might vary in time)

YO: initial value of the solution at start time which is also subject to RightHandSideExpression
however, it is only evaluated at the beginning of the simulation.

Note: Currently, the number of ODE is limited to 1000.

The result of the time integration of an ODE can be retrieved by Equations (see ode())
and, therefore, be used in all other functionalities of USER_common_variables .

MESHFREE -

InputFiles -

USER_common_variables - PhysicalProperties

3.1.23. PhysicalProperties

define physical properties of a material

See the list below.

List of members:
absolute_pressure
cv
DarcyBasisVelocity
DarcyConstant
density

eta
ForchheimerConstant
gravity

heatsource

lambda

mue
Particlelnteraction
RedlichKkwongGaslLa
w

sigma

MESHFREE -

InputFiles -

initial pressure [Pa] which is added to get the absolute pressure
specific heat of the material in J/(kg*K)

velocity of porous material [m/s]

coupling parameter for porous media [kg/(s*m”"3)]
material density [kg/m”3]

viscosity definition [Pa*s]

coupling parameter for porous media [kg/m”4]
define gravity or body forces of a material [m/s”2]
heat source [W/m”3]

thermal conductivity [W/(m*K)]

shear modulus definition [Pa]

defines the dynamics of particle-particle interaction within the DROPLETPHASE as material
property

more accurate gas law for modeling real gas behavior

surface tension [N/m]

USER_common_variables - PhysicalProperties -

DarcyBasisVelocity
velocity of porous material [m/s]

DarcyBasisVelocity

Define the reference velocity of the porous material with index $Material$:

DarcyBasisVelocity($Material$) = RightHandSideExpression

The law of Darcy models the influence of a porous medium A on a fluid B that flows through A by the addition of a
momentum source term to the standard fluid flow equations of B. See EquationsToSolve for the integration of this source
term to the momentum equation and TwoPhaseDarcy for a more specific example of using Darcy within MESHFREE .

The magnitude and direction of this source term is dependent on the relative velocity between A and B. Therefore the
DarcyBasisVelocity should be defined as a projection of the velocity of the porous medium to the points of the fluid.

The function projY() can be used to project a MESHFREE -entity %ind_Entity% from the porous medium to the fluid (and
vice versa).

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - DarcyConstant

DarcyConstant
coupling parameter for porous media [kg/(s*m”*3)]

Define the DarcyConstant 3 for the material with index $Material$:

DarcyConstant($Material$) = RightHandSideExpression

The law of Darcy models the influence of a porous medium A on a fluid B that flows through A by the addition of a
momentum source term to the standard fluid flow equations of B. See EquationsToSolve for the integration of this source
term to the momentum equation and TwoPhaseDarcy for a more specific example of using Darcy within MESHFREE .

The DarcyConstant regulates the permeability of the porous medium and thus influences the magnitude of this source
term.
Isotropic materials

If in the RightHandSideExpression one argument is given, e.g.

DarcyConstant($Material$) = (1e3) # constant Darcy constant of 1e3 kg/(s*m”3)

then the porous material is assumed to be isotropic. Thus, 4 in EquationsToSolve can be viewed as a scalar quantity.
Anisotropic materials

For anisotropic permeability, the DarcyConstant can be set for three perpendicular directions. The
RightHandSideExpression then takes twelve arguments, e.g.

DarcyConstant($Material$) = (&bx& , 1, 0, 0, ... # Darcy constant in x-direction, unit vector x
&by&, 0, 1, 0, ... # Darcy constant in y-direction, unit vector y
&bz& , 0, 0, 1) # Darcy constant in z-direction, unit vector z

In this case 3 in EquationsToSolve represents a matrix which is constructed from the supplied constants and directions.
Inertial contribution

To extend the Darcy model by an inertial contribution, see ForchheimerConstant .
Notes

« Despite the naming convention, %ind_betaDarcy% will not store g ,but 3 = %} in EquationsToSolve

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties -
ForchheimerConstant

296

ForchheimerConstant
coupling parameter for porous media [kg/m”4]

While the constant defined in DarcyConstant represents the classical Darcy relation for porous media of the form
—Vp = ﬁgu

one may further extend this by an inertial contribution of Forchheimer type by defining the constant ﬁF in
=Vp = Bpu+ Brllul|u
via

ForchheimerConstant ($Material$) = RightHandSideExpression

In case this constant is defined, 3 in EquationsToSolve is given by 5 = % (ﬁg + ﬁF

v — v‘g||) .

Isotropic materials

If in the RightHandSideExpression one argument is given, e.g.

ForchheimerConstant ($Material$) = (1.0) # scalar Forchheimer constant of 1.0 1/m

then the porous material is assumed to be isotropic. Thus, 3 in EquationsToSolve can be viewed as a scalar quantity.
Anisotropic materials

If DarcyConstant is specified for three perpendicular directions, three arguments can be supplied to ForchheimerConstant ,
e.g.
ForchheimerConstant ($Material$) = (&Fx& , &Fy& , &Fz&)

Then, the constant &bx&, &by&, &bz& in DarcyConstant are modified in the sense that bz = bx + Fz|v — vgl -
Notes

« The behavior of ForchheimerConstant replicates the behavior of specifying the Forchheimer term via an equation in
DarcyConstant which uses %ind_v_0(1:3)% (the main purpose of ForchheimerConstant is thus to simplify inputs)

« In particular, the relative velocity norm within the Forchheimer term is based on " and DarcyBasisVelocity

» Despite the naming convention, %ind_betaDarcy% will not store ﬁD , but the above 3 (in case of a non-zero
ForchheimerConstant)

o The case of non-scalar DarcyConstant but scalar ForchheimerConstant will be treated as if 3 identical values
(&Fx&=&Fy&=&Fz&) were supplied to ForchheimerConstant .

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - Particlelnteraction

Particlelnteraction
defines the dynamics of particle-particle interaction within the DROPLETPHASE as material property

Originally, the particles within DROPLETPHASE were not interacting at all. An interaction between particles within a
DROPLETPHASE chamber may now be enabled by defining:

Particlelnteraction($Material$) = (k_n, e_n, E_a, R_a, mu)

The interaction is resolved by a DEM approach which calculates forces on the basis of virtual overlap and relative velocity
of the droplets. See DropletCollisions

297

Possible

Parameter Meaning Default
Values
0.0 (no
k_n Spring Constant for particle interaction k_n>=0.0 collision
modeling)
if 0 <= e_n <=1 Coefficient of Restitution (0 ideal plastic, 1.0 ideal between 0 and
en L . . . , 0.0
elastic), if e_n < 0, negative value of the damping coefficient 1 or negative
. S . . . 0.0 (no
E_a Adhesive potential difference relative to the particle mass non-negative .
adhesion)
R a Broadness of zone of attraction relative to d30 non-negative 1.0
mu Friction Coefficient non-negative 0.0 (off)
Example:

Particlelnteraction($Material$) = (1.0, .1, 1e-3, 1.0, 0.0)

specifies that the particles of material $Material$ within a DROPLETPHASE chamber interact with each other. For the
collision a spring constant of size 1.0 is specified, a coefficient of restitution of 0.1 means that 90% of the kinetic energy is
dissipated by the colliding particles. Additionally, an adhesive potential is given acting within a close range of the particles,
attracting each other.

MESHFREE - InputFiles - USER_common_variables - PhysicalProperti
RedlichKkwongGaslLaw

RedlichKwongGasLaw
more accurate gas law for modeling real gas behavior

For the use of the Redlich-Kwong gas law define the PhysicalProperties density, cv, lambda, eta and the initial absolute
pressure for the material
with index $Material$ by using

density($Material$) = (%MED_REDLICH_KWONG%, MolarMass, PressureCritical, TemperatureCritical)
cv($Material$) = (%MED_REDLICH_KWONG%, MolarMass, PressureCritical, TemperatureCritical)
lambda($Material$) = (%MED_REDLICH_KWONG%, MolarMass, PressureCritical, TemperatureCritical)
eta($Material$) = (%MED_REDLICH_KWONG%, MolarMass, PressureCritical, TemperatureCritical)
absolute_pressure ($Material$) = InitAbsolutePressure

The parameters are:
« MolarMass [g/mol] of the material, e.g. Hydrogen: 2.01588
« PressureCiritical [Pa]: pressure from the critical point data of the material, e.g. Hydrogen: 1.3152*10"6

« TemperatureCritical [K]: temperature from the critical point data of the material, e.g. Hydrogen: 33.19

Example:

298

begin_alias{ }

"TCRIT" = "33.19" # [K]
"PCRIT" = "1.3152e6" # [Pa]
"Mw" = "2.01588" # [g/mol]
"p0" = "93.6" # [bar]
end_alias

density(GAS) = (%MED_REDLICH_KWONG%, [&Mw&], [&PCRIT&], [&TCRIT&]) # density in [kg/m3]
cv($GASS$) = (%MED_REDLICH_KWONG%, [&Mw&], [&PCRIT&], [&TCRIT&]) # heat capacity in [Nm/(Kg*K)]
lambda(GAS) = (%MED_REDLICH_KWONG%, [&Mw&], [&PCRIT&], [&TCRIT&]) # heat conductivity in [W/(mK)]

eta($GASS$) = (%MED_REDLICH_KWONG%, [&Mw&], [&PCRIT&], [&TCRIT&]) # viscosity in [Pa*s]
absolute_pressure (GAS) = [&p0& *100000.0] # initial pressure in [Pa]

begin_alias{ }

"wall" =" BC$...$ ACTIVES...$ IDENT%...% MATGAS TOUCH%...% MOVES$...$ LAYERO CHAMBER1 "
end_alias

Do not forget the absolute_pressure (see also COEFF_p_divV)Ill

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - absolute pressure

absolute_pressure
initial pressure [Pa] which is added to get the absolute pressure

Define the absolute pressure for the material with index $Material$:

absolute_pressure ($Material$) = RightHandSideExpression

This is needed if Redlich Kwong gas law (see RedlichKwongGaslLaw) and/or COEFF_p_divV is used!!!

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - cv

cv
specific heat of the material in J/(kg*K)

Define the specific heat for the material with index $Material$:
cv($Material$) = RightHandSideExpression

Alternatively:

specificheat($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - density

density
material density [kg/m”3]

Define the density for the material with index $Material$:
density($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties -

D
=+
[a§)

299

eta
viscosity definition [Pa*s]

Define the viscosity for the material with index $Material$:
eta($Material$) = RightHandSideExpression

Alternatively:

viscosity($Material$) = RightHandSideExpression

List of members:
%MED_JOHNSON_COOK% parameters for calculating viscosity in the Johnson-Cook model

%MED_LIQUID_FILM% viscosity definition in liquid films [Pa*s]

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - eta -
%MED_JOHNSON_COOK%

%MED_JOHNSON_COOK%

parameters for calculating viscosity in the Johnson-Cook model

Since the yield stress in the Johnson-Cook model can become negative, resulting in a negative viscosity, the user can
specify a minimum viscosity to avoid this.

eta($Material$) = (%MED_JOHNSON_COOK% , minimum_allowed_viscosity, OPTIONAL: eps_dot 0)

eps_dot_0: reference strain rate £, in JohnsonCook equation. If nothing is set, then the default is 1.0!

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - eta -
%MED_LIQUID_FILM%

%MED_LIQUID_FILM%

viscosity definition in liquid films [Pa*s]

Define two viscosities: one for the normal direction, one for the tangential direction (applies only if DROPLETPHASEis
active).

eta($Material$) = (%MED_LIQUID_FILM% , etaNormal, etaTangential)

« etaNormal :: defines q;‘??;;”‘“ in the numerical scheme of DROPLETPHASE

« etaTangential ::defines qéizge”‘i“‘ in the numerical scheme of DROPLETPHASE

Hint:

eta($Material$) = etaGeneral

defines the same eta both in normal and tangential directions.

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - gravity

300

gravity
define gravity or body forces of a material [m/s"2]

gravity($Material$) = (g_x, g_y, 9_2)

d_X, 9_VY, g_z are the components of the vector of gravity / body forces.
They are subject to the RightHandSideExpression .

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties -

heatsource
heat source [W/m"3]

Define a heat source for the material with index $Material$:

heatsource($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common variables - PhysicalProperti
lambda

thermal conductivity [W/(m*K)]

Define the thermal conductivity for the material with index $Material$:
lambda($Material$) = RightHandSideExpression

Alternatively:

thermalconduction($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties -

heatsource

lambda

mue

mue
shear modulus definition [Pa]

This value refers to the parameter jt¢ in the StressTensorAlgorithm .
The different options are listed below.

List of members:

PureElastic elastic modulus
JohnsonCook Johnson-Cook model
GeneralYieldStress provide a general formulation/model of the yield stress

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties -

mue -

GeneralYieldStress

GeneralYieldStress
provide a general formulation/model of the yield stress

301

General definition of the yield stress for the material with index $Matflag$ depending on the simulation results.
mue($Matflag$)= (%MED_YIELDSTRESS%, mue0, Syield, OPTIONAL:Relax)

Syield: yield stress depending on any parameter, see General and LIQUID
mueO0: shear modulus in regions of linear elastic stress (before reaching the yield stress)

Relax: parameter in [0,1] for the upper bound of the rate of change of the stresses
(e.g- Relax=0.3 means that the stresses are allowed to change by 30% from one time step to the next)

All of these values are of type RightHandSideExpression .

In order to extract a proper [to be used to integrate the stress tensor by the StessTensorAlgorithm,
the expression for Syield is numerically differentiated with respect to the plastic strain (see %ind_eps_plastic%).

dSyield

Heffective =
GJITCI:»lausLic

Note: A positive correspondence between Syield and %ind_eps_plastic% has to be provided.

List of members:

DruckerPragerModel use the GeneralYieldStress functionality to describe the behavior of granular materials

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - mue -
GeneralYieldStress - DruckerPr rM I

DruckerPragerModel
use the GeneralYieldStress functionality to describe the behavior of granular materials

The Drucker-Prager model provides a yield stress depending on the pressure.

fictitious
Syield (P) = CDruckerPrager ' UJ + pPre(Jompression) arF S_yield

Numerically, we require the following stability constraints.
1.) Limit the change of the yield stress from one time step to the next by filtering (value of alpha):

- 1 .
S;,L-l—;d = max ((1 - Q)S;ield + 0:Syield (pn"'l): S)

yield

n+l . o+l max min
Syield = max (mm (S yield: Pyield | 2 yield

2.) Feasible viscosity:
o Provide sufficient numerical viscosity (see StressTensorAlgorithm) by imposing an effective f¢ dependent on
the plastic strain, i.e. enhance the yield stress formulation.

n+l E an+1 masx min .
S yield — MHax (mm (S vields 2 yield | » Pyield | 1+ Cy- Cplasm)

o Alternatively, provide a sufficient viscosity of the following form.

h
n+1
n—Cﬂ-S"'

vield H,U ”

302

For examples, see Sand .

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - mue -
JohnsonCook

JohnsonCook
Johnson-Cook model

The material with index $Matflag$ behaves according to the Johnson-Cook model.
mue($Matflag$)= (%eMED_JOHNSON_COOK% , mue0, A, B, n, C, m, Tm, TO, OPTIONAL:Relax)

A.,B.,n,C,m,Tm, TO : definition of the yield stress motivated by the Johnson-Cook model which is given by

B n £ T-Tp \"
Tyield = [A+ Be] [1 + C'ln (5)] [1 = (m) :|

mue0: shear modulus in regions of linear elastic stress (before reaching the yield stress)

Relax: parameter in [0,1] for the upper bound of the rate of change of the stresses
(e.g. Relax=0.3 means that the stresses are allowed to change by 30% from one time step to the next)

The reference strain rate £ is set to 1.0 by default, but the user can change it optionally (seeeta,

%MED_JOHNSON_COOK%).

All of these values are of type RightHandSideExpression .

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - mue - PureElastic

PureElastic
elastic modulus

pure elastic material behavior

mue($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common_variables - PhysicalProperties - sigma

sigma
surface tension [N/m]

Define the surface tension for the material with index $Material$:

sigma ($Material$) = RightHandSideExpression

Alternatively:

surfacetension($Material$) = RightHandSideExpression

MESHFREE - InputFiles - USER_common_variables - PointCloudQualityCheck

303

3.1.24. PointCloudQualityCheck

check the quality of a read in point cloud

If a point cloud is read by ReadInPointCloud , then a quality check is performed with exactly the point cloud read,
and then the program is stopped thereafter. See also qualitycheck .

MESHFREE - InputFiles - USER_common_variables - PointCloudReduction

3.1.25. PointCloudReduction

select/mark MESHFREE points by reducing the point cloud

PointCloudReduction (n) = (f_Integration, f_Target, OPTIONAL:%PointCloudReduction_UseOldTimeStep%)

Select MESHFREE points out of the complete point cloud that represent a certain target quantity.
The algorithm aims to estabish connected subdomains. For each subdomain j we require:

fTargeL < E fInLegraLion,'i

ie sz.-m'b [J)

Only one point out of the cluster j is marked.

The result of the PointCloudReduction can be requested by the reduct() -functionality in Equations :

« marked MESHFREE point in a cluster represents the value of the integral 'eszz G) Jmtegration, i
i aub Lt

reduct(n, %EQN_Reduct_Accumulated%)
» marked MESHFREE point represents the cluster index j of Qg,(7)

reduct(n, %EQN_Reduct_iCluster%)

%PointCloudReduction_UseOIldTimeStep%: MESHFREE tries to use the reduction results of the previous

time step first (i.e. keep the selection status of points from the previous time step if possible). Then, it runs the reduction on
top of it.

Under this option, the reduction results are stored on the point cloud (in order to keep this info for the next time cycle),
which requires additional memory for each PointCloudReduction which is subject to this option.

Examples:

304

PointCloudReduction (1) = ([1], [10]) # mark every 10-th MESHFREE point

SAVE_ITEM = (%SAVE_scalar% , [reduct(1,%EQN_Reduct_Accumulated%)], "nbPointsRepresented") # how many
points are represented by the marked point

SAVE_ITEM = (%SAVE_scalar% , [reduct(1,%EQN_Reduct_iCluster%)], "numberingClusteringindex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

PointCloudReduction (2) = ([Y %ind_Vi%], [&Hmax& 73]) # mark MESHFREE points which represent a volume that is
approximately equal to &Hmax& "3

SAVE_ITEM = (%SAVE_scalar% , [reduct(2,%EQN_Reduct_Accumulated%)], "volumeRepresented") # how many
points are represented by the selected point

SAVE_ITEM = (%SAVE_scalar% , [reduct(2,%EQN_Reduct_iCluster%)], "volumeClusteringlndex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

PointCloudReduction (3) = ([reduct(1,%EQN_Reduct_Accumulated%)>0], [10]) # mark every 10-th MESHFREE point
out of the PointCloudReduction (1), i.e. every 100-th point

SAVE_ITEM = (%SAVE_scalar% , [reduct(3,%EQN_Reduct_Accumulated%)], "volumeRepresented") # how many
points are represented by the marked point

SAVE_ITEM = (%SAVE_scalar% , [reduct(3,%EQN_Reduct_iCluster%)], "volumeClusteringlndex") # display the
cluster index (index of fish scale) produced by the PointCloudReduction

result of PointCloudReduction (1):

D T AR A URS WA o
B eSS S s S Zeory
PO R R AR AP AAATIIS] ot
S OO

S SR sy
NS R
e e Vs
N ANt
B A AR 27 ALK
S N I b oy IR AN
AT VI
5

£
A
o

SRR AARO00
ey VI a aA
e S R XK

A

o
AN
%

7
o000

S ST SRS,
SEH R

el
g
o

i
2
e

i)

i
A

v
%

(

08 e AR
A

;
e £
i oA AN YA NNFaY, V4V rAs!
AR ARSI
P A
S
ROUCLORRRES
R R SR
e

. B
AN

RN
T
<

o
v

LR
RISKIA
SRS
SO
(L AN
DRRRE
SIS

X2

PR
R
R

Ry
Rl
B

4

e

X

TRPRCAAA
St
KDCREE,
S
POPEOAR AR
AR oo
i dn TN
LR R K K
R RRPRE DR
SR S
RAANVOTARKAR O
N
N

P

KK

pRaY;

20

5
2
K]

0
VR
Ty

i

&

RS
"1%‘«

Al
i

=

(LY
SESAEES

L
KL

R
-
Sl
s
K
0
S

-8
P

5
s

s,
oy
AL

B AR S]

KIKKIRRDB DRl G S

R AR RE s G % N

O IARRORE] N 2 RO

A SRS S S IR

A KRR DO 2) : ASES
D S e ST s o SR
- A, 5 EHEA S

PR N KA 4 TSR X

Ve e v iy e e S B v
DR NN AR B / S

=
sl
PO
K
4vi%)
)
KIZKT
FaStopt st
AV,
%)
¥,
¥
TERRRI
KIS
ESKAY

5
oY

7S
™
o

s
SRR
i

K2
S
v
o
N

0
AL

R

it
ke
AT, o S
SRS L SO
A N AR RA AS) A = 5 i SAAPRRXIY o e Mt
AAPAYANV i VA VAVAYA Y AN, N2 SR LR A Wasral oA
D OO KO A R A A 8 e £ S s AT f
AN, R AV 3 K s s
bt .

i

Lt
EA'
%
o
)

N
%)

K%
K
]

Rt

Savis
S0
SRE ¢

Ry

BRI

PSS AYy
AT g

S HRER

RS ek T LN

<'>

"
A
7

%0
s
&

i

N7

DR
‘ e Ny
3 SRR A AR, S
P SRR A AR K77 CE R
AT YAV N o4 Va e e i
MBI K
EENARAC KRS vaveviVas SN

B
%
RN

£
i
2
(Vi
5
L

SeR0h

TR
V%)
%

Ty
et K,
1 2 AR
A =
O f]
PORKD R RO I
L S L e R S S,

"

o5
=

Yl

o

.
vy
A‘v
VAV
15

AT S A S FATATaS S AT T ST S
AT ATA A A YA AT\ VA VAVATA VA SN A AT W S e
DR A R A A P AT A
ey A AT S S o SIS A A AN A =
T AV SV S AVAVAVAV s AVAAvATATATA A
N A AT PATA AT ATATAvATAT AT
R S AR R RS
A R R
o

e B U TS S R T
S SN STy
e et e e N
S AR S S S,
i S e
Ly

e
oy
T
et
oA
ey
LAk

%

[1;

RS
Rt
RPN

¥4
0
OO
A
SRR

o
2

=t

A
AN
'@iﬁ%ﬁ%’;
KA,
T A
LN,

oS
<z

X
S o SSNES
A S s ensaay
s, E s
POCOUARR e o Sy
KO OO R e e s
SN A S SRS

S e
SNSKERRIARY ,] Ty
AVAVATAY 6 g "»;I 5

DR
i

A
By
5
KL
IS
STV ATAT
RRSASE

By
K

=5
Yol
%
bk
%’
v

!

TS0 X
s A YA
£ T
R
R RS

S

R
TEEAT
n’é".é 1>

i
SR
N

Y

T

ez

DROCT

R RIS
5 A;vlg‘,.%v,v‘

5
D
4

2

P e
% TTATA I AT
S
S i
RARNASAARRAANAN

PR
A

SRR
ﬂ“ﬁr"u‘é‘@i}i"

s
o
HEY
0SS
o
AT

e

% = Sz
R e R R Ry
o

iy 4
s s
T SR
KR RS i : : AR R
R AR POOOR DR LROG) e Set
B AR AT Ao % B At
HURORG RS s
V) SRR
R

Sk
VORI
Lo
PRI
AN
S
KREL

U
%
)

5
>

D

Y
Tivas!

SN
RO
.m.ggﬂé.n
N
KRR
e A AT A AT TATA VAN S e AL zaAesy
i/ YA ATAVA S TA A e LTAVA =y b AR AT S Ry 7
B O SNNNNAAAARNAN AT vt RISt e Wt 8 Y
N S SIS o A A A A A st st g S s A) A S
B S NN gy e S B e Sl U L I DL AR
KIRARK £ kel LR AT A PR NS
NSNS AN S B S e

o
Sz
Vi
%

.,
5

b
g}

AY

A
'
125
o

2

5

£

Y

4%

%
WS

Z
A
W

rd

N
PR
AR
R RORA
XN
% ‘iv .
7

s
i

o
Vi)
)

5

)
¥z

=
2,
L
N
5
0!

Yz
1
S

Vil
5e
vaniy
“
&

AT S

B
S
AP

$
EobED

)

% e Eoe e 3
ST el B e 0z, meats,
SRR RERERs e AR XA
PR A s o R R AR O L
KRSNEAES SRS RS i S o I S8 SO

FATA N A A RN AT PR A T
AT AV ST, A S

WA&
7~

5B
et
ERDS

result of PointCloudReduction (3):

305

2N
FRRREER A8
PR bia
PO
fCOOOL R R 8
AT S SN IS e
SRSRE, >
ANAVAYAN YA A i

OO RO AR
L SRS
KRRRR, A

]
o
LRk
A)
O

Rty
R

I
EANGE N

Ay
X
q
ALy
SR
DR

5
s

Sfptesran

FOONN AL
VAT AN S

EOORD e‘%%%.mm azmad
Y N ETATavIvaS 4D

R ERK
SRR
TSy

iYal
KAV,

S
)
K

Lk

DS

5
SRR
LXK

PR
) KT
XDEI

KD
P ANy,
ol
25
&
4“‘
VAR

o

[
iSivy
7
o
P
!

VA

s
Vt
L
=
2
3
<\

T
N
G

0

7
S

vy

Y

Sy
KRARRIREREEN
0

%
=
e

LN,
DR PORE
PR
Z Kk
[k
P AR
AP AY S
RS S
LR AU AN o T
AT NSNS S ARp 5 ki
SN A AT K R

S VI e TS, %

NSRS RGOt Oad

PORKKPEPERERRORO0C,

Lo IO SO

R
T
o
5
X
i,
AV
47&

X
KA

vz

e‘
AV
150
\Y)
s

2

Rz
)
o

Dai
S
AVA‘.’%EA‘

G
2l
K,
S

RS

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - RESTART

3.1.26. RESTART

control the restart functionality

This includes the writing of restart files with respect to a user-defined step size as well as
the launch of a MESHFREE simulation based on a previously saved restart file. For details see below.

Note: One needs to consider a few things when using restarts
and the SAVE format HDF5ERF, see Restartlssues .

List of members:

LaunchRestart launch MESHFREE on the basis of a restart file

RestartStepSize define after how many time cycles a restart file has to be generated
DefineRestart save restart files
RestartPath Define path and file name of restart files

MESHFREE - InputFiles - USER_common_variables - RESTART - DefineRestart

DefineRestart
save restart files

The write-out of restart files is defined by RestartStepSize .

Example 1:

restart = (0)
RestartStepSize = (100, %RESTART_sequence%)

Write a restart file every 100 time cycles. The restart files are numbered from 1 until N. All files are kept on disc.
This consumes memory, but a restart is possible from any restart file. To invoke the restart, just set

restart = (n)

n is the number/index of the restart file.
306

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.PointCloudReduction

Example 2 (default):

restart = (0)
RestartStepSize = (100, %RESTART_single%)

Write a restart file every 100 time cycles. Every new restart file overwrites the existing old one.
This saves memory, but there is a risk. A restart file can be corrupt or the computer crashes during the write operation
of the restart file. In order to invoke the restart, just set

restart = (1)

Example 3 (switch off):

restart = (0)
RestartStepSize = (0, %RESTART_single%)

For n =0, no restart files are written.

Note: Restart files can also be triggered by an EVENT , see %EVENT_WriteRestart% , or by the signal save
in the SIGNAL-file, see SequentialReadingOfSignalFile .

See also checkpoint for an alternative automatic restart functionality.

MESHFREE - InputFiles - USER _common_variables - RESTART - LaunchRestart

LaunchRestart
launch MESHFREE on the basis of a restart file

Restart = m

m is the ordinal number of the restart file. This will launch MESHFREE based on the
restart file with number m.

Default: Restart = 0 (do not launch by restart file, but start from the beginning)

The behavior for reading and writing restart files is explaines in RestartPath .

List of members:

ExchangeBEOnRestart exchange parts of the boundary elements during restart
MESHFREE - InputFiles - USER_common variables - RESTART - LaunchRestart -
ExchangeBEOnRestart
ExchangeBEOnRestart

exchange parts of the boundary elements during restart

This functionality allows to include additional boundary elements files during restart. The alias definitions for these new
boundary elements have to be copied from pre-restart aliases. Furthermore, pre-restart aliases and their associated
boundary elements can be removed on restart.

restart_additionalBE = (NewBEFile, NewGeometryManipulations , NewGeometryRestrictions)
restart_copying = (CopyFromAlias, CopyToNewAlias)
restart_toberemoved = (RemoveAlias1, RemoveAlias2, ...)

307

Example:

Read in only top_new from the additional boundary elements file geometryfile2.FDNEUT , copy the alias definition for
top_new

from the pre-restart alias top, as well as remove the boundary elements associated to the pre-restart aliasestop and
bottom

during restart.

begin_boundary_elements{ }

include{ geometryfile1.FDNEUT} # this file contains the aliases top and bottom

end_boundary_elements

begin_alias{ }

"top" = " BC$wall$ ACTIVES$noinit_always$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH _liquid%
MOVES$MOVE_none$ LAYERO CHAMBERT1 " # alias top

"bottom" = " BC$wall$ ACTIVESnoinit_always$ IDENT%BND_slip% MAT$Mat1$ TOUCH%TOUCH_liquid%
MOVES$MOVE_none$ LAYERO CHAMBERT1 " # alias bottom

end_alias

restart_additionalBE = (geometryfile2. FDNEUT, only{ top_new})

restart_copying = (top, top_new)

restart_toberemoved = (top, bottom)

Note: Filling of the new boundary elements can be controlled by the parameter restartnewBE_filling.

List of members:

restart_additionalBE include additional boundary elements file during restart
restart_copying copy alias definition for additional boundary elements during restart
restart_toberemoved remove pre-restart boundary elements during restart

MESHFREE - InputFiles - USER_common_variables - RESTART - LaunchRestart -
ExchangeBEOnRestart - restart additionalBE

restart_additionalBE
include additional boundary elements file during restart

Additional boundary elements can be included during restart by:

restart_additionalBE = (NewBEFile, NewGeometryManipulations , NewGeometryRestrictions)

NewBEFile: Additional boundary elements file to be included. The same formats are supported as for include{ File}.

The categories NewGeometryManipulations and NewGeometryRestrictions are optional. None, a choice of them, or even
all of them

in the same statement/line are accepted. They have to be separated by a comma.

Warning: The alias definitions for additional boundary elements have to be copied from pre-restart aliases by
restart_copying .

Pre-restart aliases and their associated boundary elements can be removed on restart by restart_toberemoved .

Alternative syntax: Restart_AdditionalBE

List of members:
NewGeometryManipulations geometrical modifications of additional boundary elements files during restart

NewGeometryRestrictions restrictions for additional boundary elements files during restart

308

MESHFREE - InputFiles - USER_common variables - RESTART - LaunchRestart -
ExchangeBEOnRestart - restart additionalBE - NewGeometryManipulations

NewGeometryManipulations
geometrical modifications of additional boundary elements files during restart

Options:
« scale{}
« offset{ }
« rotate{ }
« mirror{ }

Functionality and syntax are the same as for include{ File} during classical start of a simulation.

MESHFREE - InputFiles - USER_common_variables - RESTART - LaunchRestart -
ExchangeBEOnRestart - restart additionalBE - NewGeometryRestrictions

NewGeometryRestrictions
restrictions for additional boundary elements files during restart

Options:
o only{}
« ignore{ }
« append{}
« sloppy{ }

Functionality and syntax are the same as for include{ File} during classical start of a simulation.

MESHFREE - InputFiles - USER_common_variables - RESTART - LaunchRestart -
ExchangeBEOnRestart - restart_copying

restart_copying
copy alias definition for additional boundary elements during restart

restart_copying = (CopyFromAlias, CopyToNewAlias)

Copy the alias definition of the pre-restart alias CopyFromAlias for the additional alias CopyToNewAlias during restart.

Note: Copying requires additional boundary elements included by restart_additionalBE .
Pre-restart aliases and their associated boundary elements can be removed on restart by restart_toberemoved .

Alternative syntax: Restart_Copying

MESHFREE - InputFiles - USER_common_variables - RESTART - LaunchRestart -
ExchangeBEOnRestart - restart toberemoved

restart_toberemoved
remove pre-restart boundary elements during restart

restart_toberemoved = (RemoveAlias1, RemoveAlias2, ...)

Remove the boundary elements associated to the pre-restart aliases RemoveAlias1 , RemoveAlias?2 , ... during restart.

309

Alternative syntax: Restart_ ToBeRemoved

MESHFREE - InputFiles - USER _common_variables - RESTART - RestartPath

RestartPath
Define path and file name of restart files

The file name and location of restart files may be specified in the UCV via the options restart_path and restart_file .

Example 1 (two arguments):

restart_path = ('RestartWriteFolder', 'RestartReadFolder’)
restart_file = 'RestartFile’

The first argument of restart_path determines the path that restart files are written into.

The second argument of restart_path determines the path that restart files are read from.

Analogous to SAVE_path , both paths are influenced by FPM_RESULTDIR_PREFIX and two hidden files

1) .SYMLINK__ _FPM_ID >>ID< < .symlink__ =" _fpm_id ="" _to_restartpath_write=""> >ID< <
_to_restartpath_read="" and="" are="" created="" directory="" link="" read="" the="" to="" which="" write=""> >|D<< is
replaced by the ID of the corresponding MESHFREE run).

restart_file determines the file name of restart files. Restart files will follow the naming convention >>restart_file<

<.restart_0001 where=""> >restart_file<< is replaced by the string supplied to the restart_file command.

In the above example, restart files RestartFile.restart 0001 would be saved to RestartWriteFolder/ in the working directory
and read from RestartReadFolder/ in the working directory.

Example 2 (single argument):

restart_path = 'RestartFolder’
restart_file = 'RestartFile’

If only a single argument is supplied to restart_path , the read and write folder for restart files are identical.

NOTE
In particular, it is recommended to specify these options when begin_save enviroments are used. While it is not
mandatory, it ensures that no unexpected storage locations or unexpected file names occur.

COMPATIBILITY

The behavior of older versions of MESHFREE and UCVs without the above commands is maintained through the following
defaults:

If restart_path is not defined, it is set to SAVE_path .

If restart_file is not defined, it is set to '>>SAVE_file< <0000 with=""> >SAVE_file<< being replaced by the string supplied
to the SAVE_file command.

FALLBACK

If no appropriate restart file is found in restart path/restart_file.restart_0001, as a fallback, a search for the file
.restart_0001 is done within the working directory.

If also this file does not exist, the simulation will stop.

MESHFREE - InputFiles - USER _common_variables - RESTART - RestartStepSize

RestartStepSize
define after how many time cycles a restart file has to be generated

310

There are two different types:
« %RESTART_sequence% - produces consecutively numbered restart files
« %RESTART_single% - overwrites the restart file each time

See also DefineRestart .

List of members:
%RESTART_sequence% define a sequence of restart files

%RESTART_single% define the production of a single restart file

MESHFREE - InputFiles - USER_common_variables - RESTART - RestartStepSize -
%RESTART_sequence%

%RESTART_sequence%

define a sequence of restart files

RestartStepSize = (n, %RESTART_sequence% , OPTIONAL:NumberFilesToKeep)

Every n time cycles, a new restart file is created. The restart files are numbered consecutively.
The names of the restart files are 'SAVE_file.restart_0001', 'SAVE_file.restart_0002', 'SAVE _file.restart_0003', ...

In addition to the restart file, a restart info file is created ('SAVE_file.restart_ 0001___ countTS___ time', ...).
It contains information on the current time step index and time.

Keep the last NumberFilesToKeep >0 restart files and let MESHFREE delete the older ones.

Note:

« Restart files can also be triggered by an EVENT , see %EVENT_WriteRestart% , or by the signal save in the
SIGNAL-file,
see SequentialReadingOfSignalFile . The additional restart file obtains the next ordinal number in the sequence of
restart files.

« Restart info files are also written in case of EVENT - or SIGNAL-triggered writing of a restart file, e.g.
'SAVE file.restart 0001 EVENT ___ countTS___ time' and
'SAVE file.restart 0001 SIGNAL___ countTS___ time'".

RestartStepSize = (n, %6RESTART_sequence% , OPTIONAL:NumberFilesToKeep ,
OPTIONAL:NumberFilesToKeepEVENT , OPTIONAL:NumberFilesToKeepSIGNAL)

Keep the last NumberFilesToKeep >0, NumberFilesToKeepEVENT >0, and NumberFilesToKeepSIGNAL >0
restart files with standard, EVENT , and SIGNAL trigger and let MESHFREE delete the older ones.

Note:
« NumberFilesToKeep refers only to restart files with standard trigger, i.e. %RESTART_sequence% .
If a restart file is also triggered by an EVENT or a SIGNAL in the same time step, this restart file is excluded from
the deletion process.
« NumberFilesToKeepEVENT refers only to restart files with EVENT trigger. If a restart file is also triggered by a
SIGNAL in the same time step, this restart file is excluded from the deletion process. This also holds vice versa.

See also DefineRestart .

MESHFREE - InputFiles - USER _common variables - RESTART - RestartStepSize -
%RESTART _single%

311

%RESTART_single%
define the production of a single restart file

RestartStepSize = (n, %RESTART_single%)

Every n time cycles, a new restart file is created. The new file replaces the old one.
The name of the restart file is 'SAVE _file.restart_0001".

In addition to the restart file, a restart info file is created ('SAVE_file.restart_0001____countTS___time’).
It contains information on the current time step index and time.

Note:

Restart files can also be triggered by an EVENT |, see %EVENT_WriteRestart% , or by the signal save in the SIGNAL-file,
see SequentialReadingOfSignalFile . The new restart file replaces the old one irrespective of the trigger standard (
%RESTART _single%), EVENT , or SIGNAL.

See also DefineRestart .

MESHFREE - InputFiles - USER_common_variables - ReadlnPointCloud

3.1.27. ReadIlnPointCloud

read in an already existing point cloud from file

Currently, pointcloud data read by the ReadInPointCloud functionality can only be used for STANDBY pointclouds.

In the near future, MESHFREE will be extended such that they can serve as initial pointcloud for classical chamber tasks
such as LIQUID , DROPLETPHASE etc.

In order to get values from the STANDBY -pointcloud, employ approxY() only. No other function can be used so far.

The STANDBY -pointcloud is subject to all MPI-reorganization steps.

begin_pointcloud{ }
include{ Filename}
end_pointcloud

The list of supported file formats can be found below.

List of members:

ASCII read in already existing point cloud from ascii format
EnSight read in already existing point cloud from EnSight format

MESHFREE - InputFiles - USER_common_variables - ReadInPointCloud - ASCII
ASCII

read in already existing point cloud from ascii format

The ascii file format is the following:

ASCII

%ind_x(1)% %ind_x(2)% %ind_x(3)% ... %ind_kob%
realValue realValue realValue ... realValue

realValue realValue realValue ... realValue

312

The first line defines this file as ascii file. The second line tells what kind of values are contained in the given columns.
There is no constraint on the order of the %ind_...%-items.

Warning: Currently, this option is only used for the PointCloudQualityCheck . This means, if a point cloud is read by this
option,

then a quality check is performed with exactly the point cloud read, and then the program is stopped thereafter. See also
qualitycheck .

Note: If the information of %ind_kob% is not given, all MESHFREE points read are assumed to be interior.

MESHFREE - InputFiles - USER_common variables - ReadInPointCloud - EnSight

EnSight

read in already existing point cloud from EnSight format

In order to read in an ensight file, the following items have to be provided.

begin_pointcloud{ }

include{ /m/scratch/hive/FPM/JK/results/KarreOriginal.case} format{ensight} ...
timeFrame{20} ...

variables{ %ind_p%="pressure" , %ind_v(1)%="velocity" , %ind_h%="H"} ...
toChamber{11} ...

toMaterial{ $MatStandby$ }

end_pointcloud

KOP(11) = STANDBY

INITDATA ($MatStandby$, %ind_h%) = 0.1

- timeFrame{n}: index of the time frame to be read. If the *.case file does not contain a TIME-section, this item can be
omitted.

« variables{ %ind_FPM_1%="variableNamelnEnsight" , %ind_FPM_2%="variableNamelnEnsight" , ... } : be sure to
use exactly the variable names as they appear in the *.case file

« toChamber{n}: chamber index given to the new MESHFREE points

- toMaterial{$Mat...$}: material index given to the new MESHFREE points -> especially useful if employing the
INITDATA functionality to setup function values

Remark :

« If the smoothing length is present in the case-file and also read in by variables{ ..., %ind_h%="whateverTheName",
... }, then MESHFREE will be able to correctly establish a search tree for the MESHFREE points of the STANDBY -
pointcloud.

« If smoothing length IS NOT present in the case file, it can still be defined by the INITDATA functionality.

« If smoothing length is NEITHER read in from the case file NOR defined by the INITDATA functionality, then
MESHFREE tries to estimate the smoothing length by itself during the first 5 time cycles of the simulation and write
the results into the variable %ind_h% . After the 5th time cycle, %ind_h% is not touched anymore.

« The smoothing length is particularly important for the neightbor-search for function approximation approxY() . If the
smoothing length does not represent the point distribution, there might be serious inefficiencies or inaccuracies: if
%ind_h% too big, MESHFREE has to handle too many neighbor points in the approxY() -function; if too small,
MESHFREE might not find enough neighbors for a proper function approximation.

« The STANDBY pointcloud is not yet saved into the RESTART file.

List of members:

GeometryManipulations geometry manipulations of the pointcloud upon read in of the case file
GeometryMovement movement of the STANDBY-pointcloud during simulation
WriteOutManipulations option to disable writing out the STANDBY point cloud

MESHFREE - InputFiles - USER_common_variables - ReadlnPointCloud - EnSight -

313

GeometryManipulations

GeometryManipulations
geometry manipulations of the pointcloud upon read in of the case file

The user has the opportunity to manipulate the geometry, coming from the case-file. In the same way as already done for
boundary elements (see GeometryManipulations),
we can add USEFUL operations to the include statements:

begin_pointcloud{ }

include{ /m/scratch/hive/FPM/JK/results/KarreOriginal.case} format{ensight} ...
timeFrame{20} ...

variables{ %ind_p%="pressure" , %ind_v(1)%="velocity" , %ind_h%="H"} ...
toChamber{11} ...

toMaterial{ $MatStandby$ } ...

scale{ 2.0,1.0,1.0}, offset{ 1.0,0.0,0.0}

end_pointcloud

All items allowed in GeometryManipulations are also allowed here, however some of them do not make sense, such as
reorientation{ etc.

MESHFREE - InputFiles - USER_common_variables - ReadlnPointCloud - EnSight -
GeometryMovement

GeometryMovement
movement of the STANDBY-pointcloud during simulation

The toMove{} functionality allows the user to let the pointcloud move during time integration. toMove{} assigns a proper
MOVE -flag to the pointcloud:

begin_pointcloud{ }

include{ /m/scratch/hive/FPM/JK/results/KarreOriginal.case} format{ensight} ...
timeFrame{20} ...

variables{ %ind_p%="pressure" , %ind_v(1)%="velocity" , %ind_h%="H"} ...
toChamber{11} ...

toMaterial{ $MatStandby$ } ...

toMove{ $SomeDefinedMovelndex$ }

end_pointcloud

MOVE ($SomeDefinedMovelndex$) = (%MOVE_...%, ...)

Any movement function as described in MOVE is allowed.

AN ALTERNATIVE to the toMove{}-functionality would be:

begin_pointcloud{ }

include{ /m/scratch/hive/FPM/JK/results/KarreOriginal.case} format{ensight} ...
timeFrame{20} ...

variables{ %ind_p%="pressure" , %ind_v(1)%="velocity" , %ind_h%="H"} ...
toChamber{11} ...

toMaterial{ $MatStandby$ }

end_pointcloud

INITDATA ($MatStandbby$, %ind_MOVE%) = $SomeDefinedMovelndex$
MOVE ($SomeDefinedMovelndex$) = (%MOVE_...%, ...)

i.e. the toMove{} is simply assigning the $SomeDefinedMovelndex$ with the appropriate variable %ind_MOVE%

MESHFREE - InputFiles - USER_common_variables - ReadInPointCloud - EnSight -
Wri Manipulation

314

WriteOutManipulations
option to disable writing out the STANDBY point cloud

The writeOut{} functionality allows the user to stop writing out the STANDBY point cloud starting from a certain SAVE step
or
to never write it out at all.

begin_pointcloud{ }

include{ /m/scratch/hive/FPM/JK/results/KarreOriginal.case} format{ensight} ...
timeFrame{20} ...

variables{ %ind_p%="pressure" , %ind_v(1)%="velocity" , %ind_h%="H"} ...
toChamber{11} ...

toMaterial{ $MatStandby$ } ...

writeOut{Somelnteger}

end_pointcloud

The given integer value is used as follows: If
Somelnteger < 0
the STANDBY point cloud is never written out. If
Somelnteger = 0
the STANDBY point cloud is written out at every SAVE step. In every other case

the cloud is only written out for the first Somelnteger SAVE steps.

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep

3.1.28. RepeatCurrentTimeStep

repeat the current time step with different parameters or reduced pointcloud

Repeat the current time step with
1.)the same pointcloud, but with changes in the simulation parameters, see
%RepeatCurrentTimeStep_BasedOnSamePointCloud% and RepeatCurrentTimeStep_ChangeCVconfiguration
2.) a reduced pointcloud, see %RepeatCurrentTimeStep BasedOnReducedPointCloud% . Optionally, also here the
simulation parameters can be changed.

MESHFREE creates a copy of the current pointcloud, does a time step, and deletes the pointcloud again. The only way to
save data from the repeated time step is by RepeatCurrentTimeStep_SaveVariables .

Finally, there is the chance to also initialize parameters of the temporary pointcloud by the original one, see
RepeatCurrentTimeStep_InitializeVariables .

315

definitions of the repeating operations

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnReducedPointCloud% ,
IndexOfPointCloudReduction, increaseFactorOf H)

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%)

RepeatCurrentTimeStep_ChangeCVconfiguration (n) = ("ord_laplace=2" ,0, "ord_gradient=2") # set the approximation
order (temporarily to 2 for the repeated time step)
RepeatCurrentTimeStep_SaveVariables (n) = (%indU_2_p_corr%, %ind_p_dyn% , # save the dynamic pressure from

the repeated time step in a user generated variable, see UserDefinedIndices

%indU_2_v(1)%, %ind_v(1)% , # save the x-component of the velocity from the repeated time step in a user generated
variable, see UserDefinedIndices

%indU_2_v(2)%, %ind_v(2)% , # save the y-component of the velocity from the repeated time step in a user generated
variable, see UserDefinedIndices

%indU_2_v(3)%, %ind_v(3)%) # save the z-component of the velocity from the repeated time step in a user generated
variable, see UserDefinedIndices

List of members:

%RepeatCurrentTimeStep_BasedOnReducedPointC repeat the current time step based on a reduced point cloud
loud%

%RepeatCurrentTimeStep_BasedOnSamePointClou repeat current time step keeping the pointcloud exactly as original
d%

RepeatCurrentTimeStep_ChangeCVconfiguration change the configuration of the common_variables.dat for the
repeating of time steps

RepeatCurrentTimeStep_InitializeVariables initialize the (temporary) pointcloud of a repeating operation for
particular entities

RepeatCurrentTimeStep_SaveVariables save results from a repeated time step on the original pointcloud

RepeatCurrentTimeStep_AdditionalComputationsAft additinal computations on original pointcloud after data transfer is
erDataTransfer finished

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
%RepeatCurrentTimeStep BasedOnReducedPointCloud%

%RepeatCurrentTimeStep_BasedOnReducedPointCloud%
repeat the current time step based on a reduced point cloud

PointCloudReduction (IndexOfPointCloudReduction) = ([1], [8]) # define a pointcloud reduction, here: select every 8th
point

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnReducedPointCloud% ,
IndexOfPointCloudReduction, increaseFactorOf _H) # define a repeated execution of the time step by the given
pointcloud reduction

« IndexOfPointCloudReduction: In order to invoke this option, a PointCloudReduction has to be necessarily active of
the form

PointCloudReduction (IndexOfPointCloudReduction) = ([1], [8]) MESHFREE

The timestep then is re-computed based on this reduced point cloud.

« increaseFactorOf_H: even though the reduced point cloud somehow suggests also an increase in H, the factor
316

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.RepeatCurrentTimeStep

desired has to be explicitely given here.
For example, marking every 8-th point would more or less mean increaseFactorOf _H=2.

REMARK: The reduced-pointcloud-algorithm passes through 3 main steps
« preparation:

o establish a new, additional pointcloud structure based on the pointcloud reduction given
o establish point search tree
o establish neihborlists (employment of the neighborlists of the original pointcloud did not succeed in any case)
o establish MPI communicatin structure for the reduced point cloud AND store the original one
o reduce the neighbor lists due to the given NEIGHBOR_FilterMethod
o reduce the neighbor lists finally due to the given max_N_stencil and max_N_stencil INTERIOR

e computation
o initialization due to RepeatCurrentTimeStep_InitializeVariables
o perform classical time step
o postprocessing due to RepeatCurrentTimeStep SaveVariables

« cleanup
o delete point cloud structure
o setin place the original MPI communication structure

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
%R rrentTim B nSamePointCloud%

%RepeatCurrentTimeStep_BasedOnSamePointCloud%
repeat current time step keeping the pointcloud exactly as original

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%)

This makes sense only if numerical parameters are changed by RepeatCurrentTimeStep_ChangeCVconfiguration .

REMARK: The same-pointcloud-algorithm passes through 3 main steps.
« preparation:
o establish a clone of the original pointcloud, i.e. no recomputation of neighborlists
o bring in place all configuration changes requated by RepeatCurrentTimeStep_ChangeCVconfiguration , save
the original configuration

e computation
o initialization due to RepeatCurrentTimeStep_InitializeVariables
o recompute the differential operators
o continue to perform the classical time step
o postprocessing due to RepeatCurrentTimeStep _SaveVariables

« cleanup
o delete the clone of the original point cloud
o reset the original configuration modified previously by RepeatCurrentTimeStep_ChangeCVconfiguration

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
R rrentTimeStep AdditionalCom ionsAfterDataTransfer

RepeatCurrentTimeStep_AdditionalComputationsAfterDataTransfer
additinal computations on original pointcloud after data transfer is finished

As the repeating of the current time step happens after the original time step is already finished,

we need a means of computing additional values on the original pointcloud. WE MUST NOT use CODI_eq (see CODI), as
this function is processed

DURING the executions of the original time step.

317

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%) # repeatine based on the
same pointcloud

RepeatCurrentTimeStep_ChangeCVconfiguration (n) = ("ord_laplace=2" ,0, "ord_gradient=2") # set the approximation
order (temporarily to 2 for the repeated time step)

RepeatCurrentTimeStep_SaveVariables (n) = (%indU_v(1)%, %ind_v(1)% , # define data trensfer from temporary to
original point cloud

%indU_v(2)%, %ind_v(2)% ,

%indU_v(3)%, %ind_v(3)% ,

%indU_p_corr%, %ind_p_dyn% ,

%indU_c%, %ind_c%)

perform additional computations on original pointcloud, based on the data transfered
RepeatCurrentTimeStep_AdditionalComputationsAfterDataTransfer (n) = (%indU_Dv%, [sqrt((Y%indU_v(1)%-Y
%ind_Vv(1)%)2 + (Y%indU_v(2)%-Y %ind_v(2)%)"2 + (Y%indU_v(3)%-Y %ind_v(3)%)"2)],

%indU_DpCorr%, [abs(Y%indU_p_corr%-Y %ind_p_dyn%)],

%indU_Dc%, [abs(Y%indU_c%-Y %ind_c%)])

In the example above,we compute the difference between the velocity, dynamic pressure, and correction pressure
solutions between the

original time step and the additionally performed time step. The results of the computations are written to the index
variables %indU_Dv%, %indU_DpCorr%, and %indU_Dc%, respectively.

The additional computations are executed regardless of the order as they appear in the brackets, i.e. dependent solution
cannot be produced. The follwing example

RepeatCurrentTimeStep_AdditionalComputationsAfterDataTransfer (n) = (%indU_A%, [...],
%indU_B%, [...],
%indU_C%, [Y%indU_A% + Y%indU_B%])

is constructed wrongly, as we presume a dependence of %indU_C% on %indU_A% and %indU_B% which
cannot be provided by RepeatCurrentTimeStep_AdditionalComputationsAfterDataTransfer .

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
RepeatCurrentTimeStep ChangeCVconfiguration

RepeatCurrentTimeStep_ChangeCVconfiguration
change the configuration of the common _variables.dat for the repeating of time steps

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%) # run repeated time step with
a clone of the original pointcloud

RepeatCurrentTimeStep_ChangeCVconfiguration (n) = ("ord_laplace=2" ,0, # set order of neuman boundary conditions
to linear ansatz functions

"ord_gradient=2" 0, # gradient computation based on linear ansatz functions

"ChangeWhateverParameterYoulLike = ValueRequired") # change any other value that can be set in common_variables

« This is especially useful if working with the same pointcloud, that means using
%RepeatCurrentTimeStep_BasedOnSamePointCloud% .

« A list of common_variables lines can be given. The numerical configuration is changed only temporarily for the n-th
repeating, and then reset to the original values

« The common_variables - items have to be separated by 0 (or any other number) currently, as there still seems a
bug in reading RightHandSideExpression if containing more than one string-objects

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
RepeatCurrentTimeStep_InitializeVariables

RepeatCurrentTimeStep_InitializeVariables
initialize the (temporary) pointcloud of a repeating operation for particular entities

318

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%)
RepeatCurrentTimeStep_InitializeVariables (n) = (%ind_TemporaryPC%, %ind_OriginalPC%,
%ind_2_TemporaryPC%, %ind_2_OriginalPC%,

etc.)

« the temporary pointcloud is initialized with the current values of the original pointcloud
with this feature, we can preset dedicated entities with other values

« always give pairs of indices

« all indices apply, als user defined indices %indU_...%

example:
RepeatCurrentTimeStep_SaveVariables (n) = (%indU_v(1)%, %ind_v(1)% ,
%indU_v(2)%, %ind_v(2)% ,
%indU_v(3)%, %ind_v(3)%)
RepeatCurrentTimeStep_InitializeVariables (n) = (%ind_v(1)% , %indU_v(1)%,
%ind_v(2)% , %indU_v(2)%,
%ind_v(3)% , %indU_v(3)%)

This example shows how to save the velocity result of the temporary pointcloud in the variables %indU_v(i)%, and then
write them
back to the temporary pointcloud in the next time cycle.

MESHFREE - InputFiles - USER_common_variables - RepeatCurrentTimeStep -
RepeatCurrentTimeStep SaveVariables

RepeatCurrentTimeStep_SaveVariables
save results from a repeated time step on the original pointcloud

RepeatCurrentTimeStep (n) = (%RepeatCurrentTimeStep_BasedOnSamePointCloud%)
RepeatCurrentTimeStep_SaveVariables (n) = (%ind_OriginalPC%, %ind_TemporaryPC%,
%ind_2_OriginalPC%, %ind_2_TemporaryPC% ,

etc.)

« after execution of the repeated time step, the temporary pointcloud is deleted

- the only way to keep function values is to copy them (by the present feature) from the temporary to the original
pointcloud

- always give pairs of indices

« all indices apply, als user defined indices %indU_...%

example:

RepeatCurrentTimeStep_SaveVariables (n) = (%indU_v(1)%, %ind_v(1)% ,
%indU_v(2)%, %ind_v(2)% ,
%indU_v(3)%, %ind_v(3)%)

This example shows how to save the velocity result of the temporary pointcloud ind the variables %indU_v(i)%

MESHFREE - InputFiles - USER_common_variables - SAVE

3.1.29. SAVE

save computational results in different formats

MESHFREE allows to save results to different file formats, see SAVE_format . The user can save multiple formats at once.
If multiple values for SAVE_path are specified, everything is stored in all given locations.

319

The output frequency is defined via SAVE_choose_meth , SAVE_first , and SAVE_interval . In the example below, the
output frequency for all three output formats is changed after 999 timesteps.

All file formats will always save the point coordinates. For some formats additional variables like normals are saved
through specifications in the SAVE_format . Other simulation variables need to be specified through SAVE_ITEM
statements. For more specialized options, see the links at the bottom.

The location for output is specified through SAVE_file and SAVE_path .

Example:

SAVE_format (1) = 'ENSIGHT6 BINARY N---'
SAVE_format (2) = 'ASCII BINARY N---'

SAVE choose _meth = 'CONT'
SAVE first (1) =1

SAVE _interval (1) =5

SAVE _first (2) = 1000

SAVE _interval (2) = 1

SAVE file = 'simulation’
SAVE_path = "results’

SAVE_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")

SAVE_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression, "VectorDescriptionText"

)

For saving different file formats or multiple saves with different SAVE parameters, one can alternatively use the
experimental begin_save{ environment, which allows for a more intuitive handling of these cases.

320

List of members:
BE_MAP

begin_save{
SAVE_BE_ITEM
SAVE_BE_MONITOR_ITEM
SAVE_BE_NODE_ITEM
SAVE_ choose_meth
SAVE_CoordinateSystem
SAVE _file

SAVE _filter

SAVE _first

SAVE_format
SAVE_format_skip

SAVE _interval
SAVE_ITEM
SAVE_MONITOR_ITEM
SAVE_path

SAVE_PID_ITEM

MESHFREE - InputFiles -

BE_MAP

Define mapping from points to BE

Define mapping from points to BE

Experimental handling of multiple save formats

item of BE surfaces to be saved for visualization

monitor item to be saved per BE element for visualization
item of BE nodes to be saved for visualization

save computational results in different formats

saving relative to specified coordinate system (movement)
file name for the results

(Experimental) Filtering of saved Pointcloud via expression
control first save

format to save simulation data

skipping cycle for SAVE_format

control saving frequency

item to be saved for visualization

monitor item to be saved for visualization

absolute or relative path for the simulation results

PID item to be saved for visualization

USER_common_variables - SAVE - BE_MAP

To map values from nearby points to the centroids of boundary elements one may specify

BE_MAP ($BEmap1$) = (ExpressionToMap, OPTIONAL: iChamber , OPTIONAL: FilterExpression , OPTIONAL:
iMethod , OPTIONAL: alphaKernel)

The results of this mapping may then be saved via
SAVE_BE_ITEM = (%SAVE_scalar%, [BEmap($BEmap1$)], "BE_BEmap1")

Note: This functionality should currently only be used in conjunction with SAVE_BE_ITEM and BEmap() .

Arguments :

« ExpressionToMap : This expression is evaluated for each point which is included in the mapping and its result is
mapped to the BE, e.g. inline equation
« iChamber : index of chamber for which the mapping is done. If the BE is in a different chamber, no mapping is done
and zero is returned. default : 0 (filtering off, consider all chambers)
« FilterExpression : Points are only included in the mapping if the result of this expression is bigger than zero, default
: 1.0 (filtering off, i.e. consider all points)

321

« iMethod : Mapping method (see below), default : %6EQN_BEmap_ClosestPoint%
- alphaKernel : Parameter to control the shape of the weighting function for %EQN_BEmap_Shephard%, default : 1

Mapping methods :
» %EQN_BEmap_ClosestPoint%: Take the value of the point which is closest to the boundary element centroid
« %EQN_BEmap_Shephard%: Take the Shephard interpolation (cf. projY()) over all points located near the boundary
element

Examples :
« Use default mapping method for BEs in any chamber and without any point filtering (to map the total pressure to the
boundary)

BE_MAP ($BEmap1$) = ([Y %ind_p% + Y %ind_p_dyn%])

« Use default mapping method for BEs in chamber 1 and without any point filtering (to map the total pressure to the
boundary)

BE_MAP ($BEmap1$) = ([Y %ind_p% + Y %ind_p_dyn%], 1)

« Choose mapping method for BEs any chamber and without any point filtering (to map the total pressure to the
boundary)

BE_MAP ($BEmap1$) = ([Y %ind_p% + Y %ind_p_dyn%], 0, 1.0, %EQN_BEmap_ClosestPoint%)

« Choose mapping method for BEs in chamber 1 and filter out interior and free surface points from candidates for
mapping (to map the total pressure to the boundary)

BE_MAP ($BEmap1$) = ([Y %ind_p% + Y %ind_p_dyn%], 1, equn{ $EQN_BEmap_BEfilter$ },
%EQN_BEmap_Shephard%, 0.1)

begin_equation{ $EQN_BEmap_BEfilter$ }

if ((Y %ind_kob% = %BND_none%) + (Y %ind_kob% = %BND_free%)) ::-1.0

else :: 1.0

endif

end_equation

« Same example but with an inline equation for the filtering

BE_MAP ($BEmap1$) = ([Y %ind_p% + Y %ind_p_dyn%], 1, [1.0 - 2.0%((Y %ind_kob% = %BND_none%) +
(Y %ind_kob% = %BND_free%))], %»EQN_BEmap_Shephard%, 0.1)

Basic algorithm :
 For each BE, the centroid location is determined
« As candidates for the mapping, all points (from chamber iChamber) in the h-ball around the centroid of the BE are
determined
« All inactive (Y%ind_vol%<0.1) points are removed from the list of candidates
« The filter expression is evaluated for each point and points with a value <=0 are removed from the list of candidates
« The mapping is done on the basis of the reduced list

Additional remarks :
« The default/fallback value can be changed via BEmap_DefaultValue

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE ITEM

SAVE_BE_ITEM

item of BE surfaces to be saved for visualization

Save scalars or 3D vector items per boundary surface element, e.g. per triangle or quad.

322

SAVE_BE_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")
SAVE_BE_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression,
"VectorDescriptionText")

The arguments xVectorExpression , yVectorExpression, zVectorExpression, and ScalarExpression can be
established
as regular RightHandSideExpression .

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE MONITOR_ITEM

SAVE_BE_MONITOR_ITEM

monitor item to be saved per BE element for visualization

Saves scalar items in the EnSight case-file of the boundary for those boundary elements which correspond to monitor
points.
Suitable monitor points are created through MONITORPOINTS_CREATION .

For each boundary element the scalar values of the defined item of all monitor points residing on this boundary element,
e.g. a triangle, are summed. If there are no monitor points on a boundary element, the resulting value is -999999.

SAVE_BE_MONITOR_ITEM = (WhatShallMESHFREEdo, ScalarExpression, "DescriptionText")

WhatShallMESHFREEdo:

e %CUMU_NONE% (no cumulation between time steps, only values of the current time step)

e %CUMU_INTERVAL% (cumulation between time steps until time interval given by the definition of SAVE _interval is
completed)

e %CUMU_SIMULATION% (cumulation between time steps throughout the whole simulation)

e %CUMU_SMOOTH% (smooth monitor items along boundary elements, using weight factor 1 for each cell)

e %CUMU_SMOOTH_AreaBased% (smooth monitor items along boundary elements (BE), using the area of the BE
as weight factor)

e %CUMU_ASSIGN% (assign monitor items along boundary elements)

The argument ScalarExpression can be established as regular RightHandSideExpression .

The DescriptionText gets the prefix "UDPmon_" in the results file. For example, "velocity _magnitude" gets extended to
"UDPmon_velocity_magnitude". The full name can then be used in ParaView's calculator for further operations.

List of members:

%CUMU_SMOOTH_AreaBase smooth monitor items along the boundary in every time step
d%

%CUMU_SMOOTH% smooth monitor items along the boundary in every time step

%CUMU_ASSIGN% assign a value to a monitor item along the boundary

%CUMU_NONE% do not cumulate the monitor values on the boundary elements (BE)

%CUMU_INTERVAL% cumulate the monitor values of newly created monitor points on the BE a save interval is
finished

%CUMU_SIMULATION% cumulate the monitor values of newly created monitor points on the BE throughout the
simulation

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE_MONITOR_ITEM -

323

%CUMU_ASSIGN%

%CUMU_ASSIGN%

assign a value to a monitor item along the boundary

This feature should be used to assign quantities to boundary elements that are based on monitor point evaluation on
boundary elements.

SAVE_BE_MONITOR_ITEM ($itemName$) = (%CUMU_SMOOTH% , uValue , "DescriptionText")

uValue has to be a function/value on boundary elements, direct point cloud attributes can not be used. A mapping to the
boundary elements by the creation of monitor points and a SAVE_BE_MONITOR_ITEM o r BE_MONITOR_ITEM is
necessary (cf. %CUMU_SMOOTH%).

The result of such an assignment can be used as input for a subsequent smoothing operation by %CUMU_SMOOTH%
using BEmon() .

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE MONITOR_ITEM -
%CUMU_INTERVAL%

%CUMU_INTERVAL%

cumulate the monitor values of newly created monitor points on the BE a save interval is finished

Cumulation between time steps until time interval given by the definition of SAVE_interval is completed.
That means, currently, all newly created monitorpoints will contribute to this item in a cumulative way. A reset of this item is
performed after a SAVE _interval is finished.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE _MONITOR_ITEM -
%CUMU_NONE%

%CUMU_NONE%

do not cumulate the monitor values on the boundary elements (BE)

No cumulation between time steps, only values of monitor points of the current time step are used.
That means, currently, all newly created monitorpoints will contribute to this item in the current time step.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE_BE_MONITOR_ITEM -
%CUMU_SIMULATION%

%CUMU_SIMULATION%

cumulate the monitor values of newly created monitor points on the BE throughout the simulation

Cumulation between time steps throughout the whole simulation.
That means, currently, all newly created monitorpoints will contribute to this item in a cumulative way. No reset of this
monitor item is performed.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE_BE_MONITOR_ITEM -
%CUMU_SMOOTH%

%CUMU_SMOOTH%

smooth monitor items along the boundary in every time step

This feature should be used when smoothing of total physical quantities on boundary elements is desired in every time
324

step. In this case, the total sum-up of the quantity will not change by the smoothing.

SAVE_BE_MONITOR_ITEM ($itemName$) = (%CUMU_SMOOTH% , Radius , WeightKernel , uValue , OPTIONAL:
%CUMU_SMOOTH_StopAtEdges% , "DescriptionText")

- Radius -> allowed interaction radius r between cells/boundary elements (see further down)

- WeightKernel -> the coefficient for the weight kernel a (see further down)

- uValue -> the cell function value u; (see further down)

« OPTIONAL: %CUMU_SMOOTH_StopAtEdges% -> smoothing should not go over secondary edges (given by the
angle criterion COMP_CosEdgeAngle)

Let us suppose given function values u; for all boundary elements ; .
We define a distribution of ; from the boundary element (cell) ; to the cell j by

~ g -

= W
Uiy E”fik ig
k

where

« Wi; = exp(—a - 1y;) -> see WeightKernel
OO [ol e .
e g = TP see Radius
i Y

« x%OC is the centrer of gravity of the i-th cell

The smoothed function ; is the sum of all distributions, i.e.

U = E ﬁji
J

We have total conservation of the form

E uizg .
i i

Note:

« The Radius is independent of the SmoothingLength in the simulation. It has to be chosen according to the
characteristic length of the boundary elements, e.g. a multiple >1 of the edge length of triangles.

« The smoothed distribution 4; can only be non-zero, if the cells ; and j have a topological connection.

- uValue has to be a function/value on boundary elements, direct point cloud attributes can not be used. A mapping
to the boundary elements
by the creation of monitor points and a SAVE_BE_MONITOR_ITEM or BE_ MONITOR_ITEM is necessary.

« Only function values u; # (0 on boundary element; are smoothed. Thus, boundary elements with no
corresponding monitor points, i.e. cumulation value of -999999, have to be treated properly.

Example : Produce a SAVE_BE_MONITOR_ITEM and smooth the result.

SAVE_BE_MONITOR_ITEM ($item_1$) = (%CUMU_SIMULATION% , [1],
"number_of_monitor_points_created_on_BE") # simply count the monitor points created in this boundar element
SAVE_BE_MONITOR_ITEM ($item_2$) = (%CUMU_SMOOTH% , 0.3, 3, equn{ EQ_smooth_1},
"smoothed_number_of_monitor_points_created _on_BE") # smooth out the total number of created monitor points
begin_equation{ EQ_smooth_1}

if (BEmon($item_1$) 1-999999) :: BEmon($item_1$)

else :: 0.0

endif

end_equation

MESHFREE - InputFiles - USER common variables - SAVE - SAVE BE MONITOR_ITEM -
%CUMU_SMOQOTH_AreaBased%

%CUMU_SMOOTH_AreaBased%

smooth monitor items along the boundary in every time step

This feature should be used when smoothing of area based physical quantities on boundary elements is desired in every
325

time step. In this case, the integral over the boundary before and after smoothing will be the same.

SAVE_BE_MONITOR_ITEM ($itemName$) = (%CUMU_SMOOTH_AreaBased% , Radius , WeightKernel , uValue ,
OPTIONAL: %CUMU_SMOOTH_StopAtEdges% , "DescriptionText")

« Radius -> allowed interaction radius r between cells/boundary elements (see further down)

« WeightKernel -> the coefficient for the weight kernel a (see further down)

« uValue -> the cell function value u; on the boundary element (see further down)

o OPTIONAL: %CUMU_SMOOTH_StopAtEdges% -> smoothing should not go over secondary edges (given by the
angle criterion COMP_CosEdgeAngle)

Let us suppose given function values u; for all boundary elements ; .
We define a distribution of u; from the boundary element (cell) ; to the cell j by
Ajug

B — —— A
YT S Wy,
k

where
o A; is the area of the i-th cell

« W;; = exp(—a - 1;;) -> see WeightKernel
coG _X(_J‘('J'G ”

o g — TP see Radius
Ly .rg
« x¥OC s the centrer of gravity of the i-th cell

The smoothed function 1; is the sum of all distributions, i.e.

Uy = E ﬂj.i
i

We have integral conservation of the form

Z wiA; = Zﬂmi.

Note:

« The Radius is independent of the SmoothingLength in the simulation. It has to be chosen according to the
characteristic length of the boundary elements, e.g. a multiple >1 of the edge length of triangles.

« The smoothed distribution 4; can only be non-zero, if the cells ; and j have a topological connection.

- uValue has to be a function/value on boundary elements, direct point cloud attributes can not be used. A mapping
to the boundary elements
by the creation of monitor points and a SAVE_BE_MONITOR_ITEM or BE_ MONITOR_ITEM is necessary.

« Only function values u; # (0 on boundary element; are smoothed. Thus, boundary elements with no
corresponding monitor points, i.e. cumulation value of -999999, have to be treated properly.

Example : Produce a SAVE_BE_MONITOR_ITEM and smooth the result with respect to the area of the boundary
elements.

SAVE_BE_MONITOR_ITEM ($item_1$) = (%CUMU_SIMULATION% , [1/BEarea(1)],
"number_of_monitor_points_created_per_area") # simply count the monitor points per area
SAVE_BE_MONITOR_ITEM ($item_2%) = (%CUMU_SMOQOTH_AreaBased% , 0.3, 3, equn{ EQ_smooth_1 },
"smoothed_number_of_monitor_points_area_based") # smooth out the area based number of monitor points
begin_equation{ EQ_smooth_1}

if (BEmon($item_1$) 1-999999) :: BEmon($item_1$)

else :: 0.0

endif

end_equation

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE BE NODE ITEM

SAVE_BE_NODE_ITEM

item of BE nodes to be saved for visualization

326

Save scalars or 3D vector item per boundary node.

SAVE_BE_NODE_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")
SAVE_BE_NODE_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression,
"VectorDescriptionText")

The arguments xVectorExpression , yVectorExpression, zVectorExpression, and ScalarExpression can be
established
as regular RightHandSideExpression .

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE_CoordinateSystem

SAVE_CoordinateSystem
saving relative to specified coordinate system (movement)

By default the results are saved relative to the standard coordinate system (no movement). For each SAVE_format a
specific coordinate system
for saving can be defined by

SAVE_CoordinateSystem (n) = $SMOVEFlag$

n: assigns this attribute to SAVE_format (n)

$MOVEFlag$: reference to given MOVE -statement, defines the coordinate system relative to which the results are saved

Example:

SAVE_format (1) = 'ENSIGHT6 BINARY N---'
SAVE_CoordinateSystem (1) = $SMOVE_vconst$

MOVE ($MOVE_vconst$) = (%MOVE._ velocity% , 0.0, 0.0, 1.0)

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE ITEM

SAVE_ITEM

item to be saved for visualization

Either scalar or 3D vector items can be saved.

SAVE_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")
SAVE_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression, "VectorDescriptionText"

)

The arguments xVectorExpression , yVectorExpression , zVectorExpression , and ScalarExpression
can be established as regular RightHandSideExpression .
Example:

327

SAVE_ITEM = (%SAVE_vector%, [Y %ind_v(1)%], [Y %ind_v(2)%], [Y %ind_v(3)%], "velocity") # velocity vector
SAVE_ITEM = (%SAVE_scalar%, [Y %ind_p%], "hydrostatic_pressure") # hydrostatic pressure (part of the pressure
due to gravity and other body forces, see HydrostaticPressure)

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_p_dyn%], "dynamic_pressure") # dynamic pressure (part of the pressure
due to dynamic or compression forces, see DynamicPressure)

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_T%], "temperature") # temperature

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_h%], "smoothing_length") # smoothing length

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_act%], "activation_status") # activation status of point (to filter only active
points)

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_cham%], "chamber_index") # chamber index (to filter points of different
phases in a multiphase setup)

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_dtb% /Y %ind_h%], "normed_distance_to_boundary") # normed distance
to boundary wrt smoothing length

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_kob%], "kind_of_boundary") # geometrical type of point (interior, free
surface, inflow, outflow, wall etc.)

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE MONITOR_ITEM

SAVE_MONITOR_ITEM

monitor item to be saved for visualization

Saves items for points of the monitor point cloud. Suitable monitor points are created through
MONITORPOINTS_CREATION .
The syntax of SAVE_MONITOR_ITEM is identical to the one of SAVE_ITEM .

SAVE_MONITOR_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")
SAVE_MONITOR_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression,
"VectorDescriptionText")

The arguments xVectorExpression , yVectorExpression, zVectorExpression, and ScalarExpression can be
established
as regular RightHandSideExpression .

See also MONITORPOINTS .

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE PID ITEM

SAVE_PID_ITEM

PID item to be saved for visualization

328

SAVE_format (1) = 'ENSIGHT6 BINARY N---'

SAVE choose meth = 'CONT'
SAVE first (1) = 1
SAVE _interval (1) =5

SAVE_file = 'AnyFileName'
SAVE_path = 'AnyFilePath’

SAVE_ITEM = (%SAVE_vector%, xVectorExpression, yVectorExpression, zVectorExpression, "VectorDescriptionText"

)
SAVE_ITEM = (%SAVE_scalar%, ScalarExpression, "ScalarDescriptionText")
SAVE_ITEM = ...

SAVE_PID_ITEM = (SwitchExpression_1, "PID description”)
SAVE_PID_ITEM = (SwitchExpression_2, "description of second PID item")
SAVE_PID_ITEM = ...

The PID defines a selection. SwitchExpression_1, SwitchExpression_2, SwitchExpression_... are mathematical
expressions.
If the expression is positive, then the MESHFREE point belongs to the PID-selection, otherwise it does not.

Note:
« Currently, up to 64 PID definitions are possible (hnumber of bits of a double real).
« The description text appears in the result file.
« Currently, it works only for ENSIGHT6 BINARY.

Example 1: PID based on materials or chamber

SAVE_PID_ITEM = ([Y%ind_cham%=1], "WATER")
SAVE_PID_ITEM = ([Y%ind_cham%=2], "AIR")

Example 2: PID based on subregions

SAVE_PID_ITEM = ([InDom("SubRegion1")], "PID_SUB_1")
SAVE_PID_ITEM = ([InDom("SubRegion2")], "PID_SUB_2")

"SubRegion1" and "SubRegion2" have to be valid aliases which define closed geometrical domains.

MESHFREE - InputFiles - USER _common_variables - SAVE - SAVE choose meth

SAVE_choose meth

save computational results in different formats

Options:
» Saving mode based on the number of time cycles

SAVE_choose meth = 'CONT'

« Saving mode based on simulation time.
SAVE_choose _meth = 'TIME'

See also SAVE interval .
Note:
329

It is not possible to define different SAVE_choose meth for different SAVE_format or SAVE_path via indexing. To define
different methods in such cases, use begin_save{ environments instead.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE file

SAVE file

file name for the results

File name for the results, usually without extension.

See SAVE_path for complete description.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE filter

SAVE filter
(Experimental) Filtering of saved Pointcloud via expression

The experimental SAVE_filter allows for filtering of the pointcloud via expression. Currently, this feature is restricted to
ENSIGHT6 BINARY only. Example:

SAVE_format (1) = 'ENSIGHT6 BINARY N--T'
SAVE_filter (1) = [Y%ind_kob%=%BND_free%] # only save points of free surface.

MESHFREE - InputFiles - USER_common variables - SAVE - SAVE first
SAVE_first
control first save

Start saving after a number of time cycles or a given simulation time.

See SAVE_interval for a more detailed description.

MESHFREE - InputFiles - USER _common_variables - SAVE - SAVE format

SAVE_format

format to save simulation data

SAVE_format specifies the format for result files for point cloud and geometry. The general syntax is:

SAVE_format ="' MainFormat FourFormatLetters AdditionalOptions(optional) '

Example:

SAVE_format (1) = 'ENSIGHT6 BINARY N---
SAVE_format (2) = 'ASCII N---"
SAVE_format (3) = 'ERFHDF5 N---'

Main Formats

« "ENSIGHT6 BINARY "

o "ASCII " (only supports "N---", "N-T-" and "ONLY:PARTICLES")

« "ERFHDF5 " (only supports "N---" and "ONLY:PARTICLES")
Four format letters

330

Usage of the four format letters:

Four format

letters Meaning
'N---' display only active nodes (Y %ind_act% > 0)
A display ALL nodes, even the inactive MESHFREE points; in this case the user should also save the

quantity %ind_act% to distinguish these in postprocessing.
'N--T" nodes and tetrahedra coming from the Delaunay decomposition of the MESHFREE point cloud

nodes and surface triangles produced by Delaunay decomposition of the free surface and the regular

N-T- boundaries
'NN--' nodes and boundary normals, only for 'ENSIGHT6 BINARY'
. . nodes and connectivities between multiple chambers, useful for visualizing contact between phases, see
NC-- o
PHASE_distinction .
Cpr additional option for 'ENSIGHT6 BINARY'; invokes the visualization of the metaplanes, very useful for

debugging

Additional options

« 'ONLY:PARTICLES' (Save only the MESHFREE points and do not save the geometry, as it might contain a huge
amount of data).
Example:

usage: "SAVE_format(1) = 'ENSIGHT6 BINARY N--- ONLY:PARTICLES™

« NO:PARTS (Do not split the MESHFREE point chambers into parts for 'ENSIGHT6 BINARY'. ParaView as well as
Vislt have
problems and usually produce errors, if one of the chambers disappears. This might be the case, if
the SHALLOWWATER solver is used together with LIQUID , but SHALLOWWATER is switched off after a certain
time.)

« TIMEACC:n set the number of decimal places in the case file for the time set. The standart format is e12.5, i.e.
TIMEACC:5, bit this will lead to problems if saving every timecycle for a big time and small time steps size (say t=1
and dt=1.0e-6 cannot be resolved anymore in the case file). This option has only effect for ENSIGHT6 BINARY.

Note: When using begin_save{ environments, the command SAVE_format (i) with i>1 is no longer supported.

List of members:

ASCII computation results column-wise in an ASCII formatted file
ENSIGHT6 computation results in Ensight6 format
ERFHDF5 computation results in ESI format ERF-HDF5

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE format - ASCII

ASCII

computation results column-wise in an ASCII formatted file

Per save time, MESHFREE creates one big result file (ASCII_0001.dat, etc.). It columnwise contains the values for each
active MESHFREE point.

331

« 1st column: time

« 2nd column: x-component of position
« 3rd column: y-component of position
« 4th column: z-component of position

e 5th column and wup: results as defined by the SAVE_ITEM statements

USER_common_variables .

Example:

SAVE_format (1) = 'ASCII N---'
SAVE_ITEM = (%SAVE_scalar%, [Y %ind_cluster%], "iCluster")
SAVE_ITEM = (%SAVE_scalar%, [Y %ind_Vi%], "VolumePerPoint")

SAVE_ format -

in the order as given

ENSIGHT6

MESHFREE - InputFiles - USER_common_variables - SAVE -

ENSIGHT6

computation results in Ensight6 format

EnSight is a very common file format to save time series. It is supported
by several visualization tools, e.g. ParaView.

EnSight results always start out with a case file. MESHFREE will write out two
case files, one for the point cloud and one for the boundary elements. Their
name is controlled by SAVE_file .

SAVE file = 'simulation’
SAVE_path = results'

will produce files 'simulation.case’ for the point cloud and

'BE_simulation.case' for the boundary elements in the subfolder 'results'.
Because of the structure of the EnSight file format there are two

additional hidden subfolders called ".EnsightData___simulation-output'

and ".EnsightData_BE__ BE_simulation-output', also depending on SAVE_file .
These contain the actual data.

ENSIGHT6 has the following syntax:

SAVE_format (1) = ENSIGHT6 BINARY NNTTP ONLY:PARTICLES NO:PARTS

SAVE_format (2) = ENSIGHT6 BINARY ----
where the first is the maximum and the second is the minimum
required syntax. At minimum at least four letters are required.

Their meaning is dependent on their position:
« 1. Position: -/N/A (zero-dimensional; points)
o '-' Do not write extra node information. MESHFREE points
might not be available in some visualization software
for visualization as points. Positions are still
written out for the triangulation.
o 'N' Write out nodes as points.
o 'A" Write out all points including inactive ones.
« 2. Position: -/N/C/S (one-dimensional; lines)
o '-' Do not write out any lines.
o 'N' Save point normals explicitely as line objects.
o 'C' Save interface connectivities between chambers for
each interface point.
o 'S' Save segments/pathlines.
« 3. Position: -/T (two-dimensional; faces)
o '-' Do not write out any triangles.
o 'T" Write out triangulation of the surfaces of the point cloud.

in

332

« 4. Position: -/T (three-dimensional; solids)
o '-' Do not write out any tetrahedra.
o 'T" Write out tetrahedralization of the point cloud volume.

These four items may be followed by a 'P' to write out metaplanes
in the BE case file.

ONLY:PARTICLES will only write out the point cloud but not the
boundary elements. And NO:PARTS will save both the point cloud and
the boundary elements as a single EnSight part each. This is to
prevent potential problems with specific visualization software.

Note: In the EnSighté standard (page 9-121ff, 851ff), the maximum length for part and variable names is 79. Longer
names are cut at this length.

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE format - ERFHDF5

ERFHDF5
computation results in ESI format ERF-HDF5

Save data as ERFs:
SAVE_format (1) = 'ERFHDF5 N---'

ERF is short for "ESI RESULT FILE". It is the standardized data format of the ESI group, based on the HDF5 data format
of the HDF group (Hierarchical Data Format). It can be used to store the data from a MESHFREE simulation, i.e. positions
and velocity of the points and the boundary elements and self-defined SAVE_Items for these points.

List of members:

Introduction General informations on ESI format ERF-HDF5
FurtherInformation Further informations on ESI format ERF-HDF5
Restartlssues Notes about using ERF-HDF5 with restarts

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE format - ERFHDF5 -
Furtherlnformation

Furtherinformation
Further informations on ESI format ERF-HDF5

In this section we take a closer look at a specific ERF file, see HDFView_example.jpg , and try to understand what blocks
the MESHRFREE-generated ERF files generally contain and which data is stored where.

Constant and varying data: ERF distinguishes between blocks with constant data and blocks with data that varies
depending on independent variables. Mostly, "time" is the only independent variable. All constant data is stored in the file
"constant" and all varying data is stored inthe file "singlestate". In "singlestate" there are several subfiles called
"state XXXXXX" for the different timesteps under consideration. The number of the independent variables is stored in the
file "indices", while the definition of them is done in the singlestates under "entityresults" in "indexident” (timestep number)
and "indexeval" (concrete value of the time).

333

http://www3.ensight.com/EnSight10_Docs/UserManual.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.SAVE.SAVE_format.ERFHDF5
https://svn.itwm.fraunhofer.de/svn/FPM_documentation/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.SAVE.SAVE_format.ERFHDF5/HDFView_example.jpg

MESHFREE points and boundary elements: Two different kinds of simulation results are written out, the informations on
the MESHFREE points and their respective SAVE_Item values and the informations on the boundary elements that
represent the geoemtry. The MESHFREE points are treated as 0D Finite Elements, i.e. single points without triangulation,
of the type "FPM", while the boundary elements are 2D Finite Elements of the type "SHELL".

Entity IDs: Every MESHFREE point n and every boundary element n is referenced via a unique ID entid(n). It should be
stressed, that every boundary element, i.e. every triangle, is referenced by only one ID, not by three.

The connectivities files: There are two files that contain information on neighborhood relations. The "connectivities" file in
the "constant" folder contains information on the fixed neighborhood relations between the boundary elements while the
files with the same name in the "singlestate" folder contain information on the changing neighborhood relations between
the MESHFREE points. But that is not all, the latter folder also associates point coordinates via its attributes with the
simulation data of the SAVE_Items. It is a very important file that describes connectivities between sets of data in general.

The files variable and variablegroup: The constant file "variable" contains metadata on the SAVE_Items like their name, if
they are scalars or vectors or their units. These variables have to be paired with a "variablegroup”, because this is the
standard procedure and not because it would be needed in the case of MESHFREE . So for every variable a variable
group with the same name is created, which contains just this variable.

The entityresults files: The constant file "entityresults” contains the positions of the boundary elements at timestep 0. Its
non-constant counterpart contains the simulation data for the MESHFREE points. The data for the SAVE_ITEMS is stored
in "FPM" in "res" and referenced via the entity IDs. The file "FPMNODE" contains the absolute coordinates of the
MESHFREE points and their vector-valued velocities. "SHELL" and "NODE" are the equivalents of "FPM" and
"FPMNODE" for the boundary elements. "NODE" does not contain the absolute coordiantes of the boundary elements but
their relative coordinates compared to the ones at timestep 0.

Distinguish between boundary parts: In "PART" the aliases for different parts of the boundary are saved in the dataset
"title" and IDs for these parts are stored in "pid". This would be needed, if one wants to make some parts of the boundary
invisible for visualization purposes.

MESHFREE - InputFiles - USER _common_variables - SAVE - SAVE format - ERFHDF5 -
Introduction

Introduction
General informations on ESI format ERF-HDF5

The following files need to be linked respectively compiled to build ERF blocks with MESHFREE . This is currently done by
default when building MESHFREE .

« The HDFS5 library: libhdf5.a
« C routines from ESI: erfhdf5.cpp
« Fortran bindings: erf_api.h

The general structure of HDF5 is simple: It consists of so-called HDF5 groups (which are files), their properties and
attributes (also together referred to as metadata) and the raw data (e.g. simulation results). The metadata and the raw data
are together referred to as datasets.

An ERF file consists of so-called ERF blocks, which are formally HDF5 groups. How these blocks have to be structured
and which kind of datasets they have to contain depends on the kind of results one wants to store. Many blocks are
optional, only a few are mandatory. This is the reason why some programs, which support the ERF format, might not be
able to process ERF files produced by MESHFREE , simply because these programs expect optional blocks that are not
needed for MESHFREE . It should also be noted that MESHFREE always writes at least one boundary element out, even
if "ONLY:PARTICLES" is selected, just to make its ERF files processable for more visualization programs.

Here are some useful links to delve further into the matter:

334

» The ERF documentation of the ESI group:
https://myesi.esi-group.com/ERF-HDF5/
Besides the documentation a handy program called HDF-View can also be downloaded here. It allows to read and
write
HDF5 files and visualizes the hierarchical structure of such a file.
« HDFS5 tutorials from the HDF group:
https://support.hdfgroup.org/HDF5/Tutor/

Below is an example, containing a common_variables , a USER_common_variables and a HDF5 file. It can be used to
take a look at an actual ERF file or to change some of the SAVE_ltems and see how this affects the produced ERF file.
EXAMPLE

MESHFREE - InputFiles - USER _common_variables - SAVE - SAVE format - ERFHDF5 -
Restartlssues

Restartlssues
Notes about using ERF-HDF5 with restarts

The currently used strategie for managing freed memory space when using ERFHDF5 with restarts is not yet optimal and
may lead to erfh5 files occupying much more memory space than they actually need (after one or more restarts). These
holes in the memory can be closed by using the following terminal commands:

hb5repack FileName.erfh5 placeholder.erfh5
rm FileName.erfh5
mv placeholder.erfh5 FileName.erfh5

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE_format_ skip

SAVE_format_skip
Skipping cycle for SAVE_format

Additional control option for the frequency of saving result files associated to a specified SAVE_format .
SAVE_format_skip (n) =m

n: assigns this attribute to SAVE_format (n)

m is a positive integer which is used in the following procedure:
- Decision if results are saved in the current time step only according to SAVE_interval . If yes, update the save index.

« For each SAVE_ format check if save index is divisible without remainder by the associated SAVE format_skip -
value m . If yes, save the results. Otherwise, skip saving.

Default: SAVE_format_skip (n) = 1 (i.e. frequency of saving only controlled by SAVE _interval)
Note: SAVE_first and SAVE_interval apply to each SAVE_format .
Example: Save each second time step for the first SAVE format, only save every 6 time steps for the second

SAVE_format, and
only save every 10 time steps for the third SAVE_format .

335

https://myesi.esi-group.com/ERF-HDF5/
https://support.hdfgroup.org/HDF5/Tutor/
https://svn.itwm.fraunhofer.de/svn/FPM_documentation/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.SAVE.SAVE_format.ERFHDF5/

SAVE_format (1) = 'ENSIGHT6 BINARY N---'
SAVE_format (2) = 'ASCII N---'
SAVE_format (3) = 'ERFHDF5 N---'

SAVE_first (1) = 1
SAVE_interval (1) =2

SAVE_format_skip (1) = 1
SAVE_format_skip (2) =3
SAVE_format_skip (3) =5

this line is not necessary since it is the default

See also begin_save{ .

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE interval

SAVE interval
control saving frequency

SAVE_interval allows to control the frequency of saving result files. Its interpretation is either the
number of time steps or the simulation time depending on SAVE_choose_meth .

The output frequency can be refined in intervals of interest by providing multiple SAVE_first and SAVE_interval
statements. These apply to each SAVE_format .

An additional control option for the ouput frequency is given by SAVE_format_skip .

Example 1: time step dependent writeouts

SAVE_choose _meth = 'CONT'
SAVE _first (1) = 1

SAVE interval (1) =5

SAVE first (2) = 1000
SAVE_interval (2) = 1

SAVE first (3) = 1100

SAVE interval (3) =5

Here, starting from the first time step, after every 5 time cycles a result file is generated.
After 1000 time cycles, a result is generated after every time step.
Finally, after 1100 time cycles, the output again is generated after every 5 time steps.

Example 2: simulation time dependent writeouts

SAVE choose meth = 'TIME'
SAVE first (1) =0.5
SAVE interval (1) = 0.1

This writes a result file each time a simulation time of (.5 4+ 0.1n seconds (n > [)) has been reached (or surpassed).

MESHFREE - InputFiles - USER_common_variables - SAVE - SAVE path

SAVE_path

absolute or relative path for the simulation results

Use SAVE_file and SAVE_path to set the location for the results.

336

SAVE_file = 'FileBaseName'
SAVE_path = 'FilePath'’

Multiple save paths:
If the results shall be saved into multiple different directories, one may define different values
of SAVE_path within different begin_save{ environments.

Attention: The old indexing into save path, i.e. SAVE_path (n), is no longer supported
and has been replaced by the begin_save{ functionality.

Prefix via environment variable:

With the command line option -r or the environment variable FPM_RESULTDIR_PREFIX,

a prefix to the SAVE_path can be defined, for example to save all results inside the same directory
on a large hard drive. This prefic will also apply to all definitions of SAVE_path within

begin_save{ environments.

Symbolic links:
Every simulation generates one or more hidden files called

SYMLINK__ _FPM_ID_ID_of_run__ _to_ SAVEPATH_{number_of_save_path}

These are symbolic links to the location of a result file and can be used to access all SAVE paths
conveniently from one place. In particular, if no begin_save{ environments are used, a single symbolic
link is created. On the other hand, if begin_save{ environments exist, a symbolic link for each
SAVE_path within these environments is created.

MESHFREE - InputFiles - USER_common_variables - SAVE - begin_save{

begin_save{
Experimental handling of multiple save formats

The experimental begin_save{ environment makes it possible to differentiate between several saving environments with
different parameter settings and possibly different saving formats in a straightforward way. A user can define up to 10
begin_save{ environments, each with its own set of SAVE parameters. With this, simulation results might be saved in
different files in different ways.

This environment uses the command SAVE_type , which allows the user to control the type of data that will be saved.
A begin_save{ environment may contain the following features:

« SAVE_choose_meth

o SAVE_format

o SAVE_first

« SAVE_interval

o SAVE_type

o SAVE_file

o SAVE_path

e SAVE_CoordinateSystem
o SAVE_ITEM

If any of the aforementioned SAVE statements are declared outside of begin_save{, they are used as initializations for all
begin_save{ environments. Statements inside the environments take precedence over outside statements and can
overwrite them.

A SAVE_MONITOR_ITEM or a SAVE_BE_MONITOR_ITEM statement has to be declared outside of the environment.
SAVE_format_skip is redundant, but might still be used. When using begin_save{ environments it is not possible to declare

337

SAVE_format (i) with i>1 outside of them (which would be very confusing anyway).

SAVE _first = 2 | initialization of begin_save{

SAVE interval = 4 ! initialization of begin_save{
begin_savef{ }

SAVE_choose_meth = "TIME'

SAVE_format = 'ENSIGHT6 BINARY N--T'

SAVE_first = 0.005 # overwrites initialization values

SAVE _interval = 0.001 # overwrites initialization values
SAVE_type = 'Monitor'

SAVE_type = 'Boundary'

SAVE_file = 'testEnsight'

SAVE_path = 'testEnsight'

SAVE_CoordinateSystem = $SMOVE_vconst$

SAVE_ITEM = (%SAVE_scalar%, [Y %ind_ETA%], "eta")
SAVE_ITEM = (%SAVE_scalar%, [Y %ind_r%], "density")
end_save

begin_savef{ }

SAVE_choose _meth = 'CONT'
SAVE format = 'ERFHDF5 N---'
SAVE first (2) =15

SAVE interval (2) = 10
SAVE_file = 'testERF'
SAVE_path = 'testERF'
end_save

Not all SAVE formats are fully supported:

o ENSIGHT®6 : Fully supported.

« ERFHDF5 : At present, only a single begin_save{ environment with the ERFHDF5 format may be used. It is,
however, still
possible to combine a ERFHDF5 begin_save{ environment with save_environments that use different formats.
Also not all options of SAVE_type are supported; one may only use 'PointCloud’, 'TimeStep', 'None' or the default
value. If 'Boundary’
or 'Monitor' are chosen, SAVE_type is set to default.

« ASCII: Several ASCII environments are possible, but the SAVE_type feature is not supported within this format,
except for
"TimeStep'.

List of members:

SAVE_type Choose which type of data shall be saved

MESHFREE - InputFiles - USER_common_variables - SAVE - begin_save{ - SAVE_type

SAVE_type
Choose which type of data shall be saved

The begin_save{ environment supports the command SAVE _type , which allows the user to control the type of data that
will be saved. By default all data is saved, but setting SAVE_type to 'PointCloud’, 'Boundary' or 'Monitor' allows for saving
only data on the point cloud, boundary elements or monitor points respectively. Setting SAVE_type to 'TimeStep' allows for
saving only the .timestep and .timestep.header files.

Combinations of several types are also possible.

By setting SAVE_type to 'None', no boundary, point cloud or monitor data is saved and timestep files are not saved either.

338

'Boundary' and 'Monitor' are not supported by ERFHDF5; if chosen, the flag for SAVE _type is set to default.

begin_savef{ }
SAVE_type = 'Monitor'
SAVE_type = 'Boundary’
SAVE_type = 'TimeStep'
end_save

begin_savef{ }

SAVE_type = 'PointCloud'

end_save

MESHFREE - InputFiles - USER_common_variables - Selection

3.1.30. Selection

Switch/Case-type selection statement

Allows to use selections depending on aliases. Besides exact matches a default case is supported.
In the simple case selection statements work on scalar aliases.

begin_alias{ }

"SelectionAlias" = "ON"

end_alias

begin_selection{ "SelectionAlias"}
case{ "OFF"}

éése{ "ON"}

;:“ase_else{ }

;e“nd_selection

Remark: The alias used by the selection needs to be defined before the selection statement!

The 'case_else{}' is optional. Within the case blocks all USER_common_variables syntax is allowed. All statements
of a valid case block, i.e. the case which matches the current value of the SelectionAlias, are globally visible.

It is also possible to use selections on alias vectors:
begin_alias{ }
"SelectionAliasVector" = "ON,OFF,OFF,ON"

end_alias

begin_selection{ "SelectionAliasVector"}
case{ "2,0FF"}

éése{...}
;;asefelse{ }

end_selection

339

For alias vectors the case statement contains the index (starting from 1) and the value to be checked.
In general, selection statements can be nested up to a certain limit.

An extension of the Selection to mathematical expressions is possible:

begin_alias{ }

"SelectionAliasVector" = "-3.1415926"

end_alias

begin_selection{ }
case{ [&SelectionAliasVector&>0]}

;:-ése{ [&SelectionAliasVector&<0]}

;:-ése_else{ }

;a"nd_selection

This is the so called mathematical-selection, and represents a way to mimic if-elseif-else constructions in the input file. The
begin_selection{ }-clause must not contain any argument.

Soon, the direct implementation of if-elseif-else will follow.

MESHFREE - InputFiles - USER_common_variables - Smoothinglength

3.1.31. SmoothingLength

define the smoothing length by a set of commands

In MESHFREE , the smoothing length is the parameter for the spatial discretization in MESHFREE . For each point
within the pointcloud it defines the radius of point interation.

All points within a radius of the local smoothing length around a point are called neighbors of the point. The stencils for
setting up the discretization are based on these neighbor relations.

Based on the definition of the smoothing length MESHFREE will automatically fill the simulation domain with a pointcloud
corresponding to the choice of the smoothing length.

Choosing smaller smoothing length yields finer discretizations. The smoothing length should locally be at maximum a little
smaller than the size of the effect that should be resolved - let it be a thin geometry part or a boundary layer.

Strategies for defining the smoothing length
MESHFREE offers different strategies for specifying the discretization - steered by the compulsory parameter
USER_h_funct.

Constant smoothing length

CONS : Constant smoothing length provides a constant discretization in the simulation domain. It is specified by
USER_h_funct = 'CONS'

A constant coarse smoothing length is the preferred mode for the first setup.
Discrete smoothing length

DSCR : variable smoothing length allows user defined refinements on location and physical quantities.
USER_h_funct = 'DSCR'

Good to know:

340

« For example, this is useful if you want to refine locally around thin geometry parts. (see SMOOTH_LENGTH)

« If a small smoothing length is attached to a large geometry part, many reference points for the determination of the
smoothing length are created on the geometry. If there are too many, then the computation becomes inefficient and
will abort if this upper bound is met.

Adaptive smoothing length
ADTV : There are also automatic approaches to adapt the smoothing length to the transient simulation. The idea is to see

the smoothing length as function on the pointcloud. The user can assign values to Y %ind_h_adaptive% and the
pointcloud is organized with respect to this proposal of the smoothing length, see ADTV for a more detailed description

USER_h_funct ='ADTV'

Adaptive plus discrete smoothing length

ADDS allows for combining the two previous approaches:
USER_h_funct = 'ADDS'

Miscellaneous
Checking the smoothing length

The local smoothing length on the pointcloud can be visualized by saving the index Y %ind_h% :
SAVE_ITEM = (%SAVE_scalar%, [Y %ind_h%], "SmoothingLength")

Quality of the smoothing length function

A transition from a fine to a coarse smoothing length should always be smooth and not abrupt - otherwise small effects
due to approximation or discretization can build up and lead to instabilities.

List of members:

USER_h_funct choose either constant, locally variable, or adaptive smoothing length
USER_h_min minimum allowed smoothing length

USER_h_max maximum allowed smoothing length

SMOOTH_LENGTH provide a function of smoothing length

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - SMOOTH LENGTH

SMOOTH_LENGTH

provide a function of smoothing length

Options for discrete (locally variable) smoothing length definitions:

SMOOTH_LENGTH ($SLflag$) = (%H_constant% , H)

SMOOTH_LENGTH ($SLflag$) = (%H_spherical% , H_min, L_min, dH/dr, H_max)

SMOOTH_LENGTH ($SLflag$) = (%H_radial% , H_min, L_min, axis_x, axis_y, axis_z, dH/dr, H_max)
SMOOTH_LENGTH ($SLflag$) = (%H_linear% , H_min, L_min, normal_x, normal_y, normal_z, H_max)
SMOOTH_LENGTH ($SLflag$) = (%H_ring% , H_min, L_min, dH/dr, n_x, n_y, n_z, H _max)

See also DSCR .

341

For linking the smoothing length description to the boundary, you need to set the smoothing length tag $SLflag$. An
example can be found
under SMOOTH_LENGTH .

List of members:

Y%H_constant% constant smoothing length or smoothing length given as equation
Y%H_spherical% spherical smoothing length distribution around points or geometry elements
Y%H_linear% linear smoothing length distribution with respect to a plane

Y%H_radial% radial smoothing length distribution with respect to an infinite tube
Y%oH_ring% annular smooth length distribution with respect to a torus

MESHFREE - InputFiles - USER_common_variables - SmoothingLength -
SMOQOTH_LENGTH - %H_constant%

%H_constant%
constant smoothing length or smoothing length given as equation

Constant smoothing length or smoothing length given by an explicit equation.
SMOOTH_LENGTH ($SLflag$) = (%H_constant% , H, OPTIONAL:weight , OPTIONAL:d(weight)/d(length))

H: smoothing length to be used

weight: The resulting smoothing length will be computed as H_resulting = H*weight. That makes sense if a normalized
function exists
which can be used in order to locally refine, for example refinement due to accuracy constraints.

d(weight)/d(length): local change rate of the weight. This has an impact only if working with the original version of
UseBoxSystemVersion (=0 or =1).

MESHFREE - InputFiles - USER_common_variables - Smoothinglength -
SMOQOTH_LENGTH - %H_linear%

%H_linear%
linear smoothing length distribution with respect to a plane

Form a plane. On one side, the smoothing length is constant. On the other side, the smoothing length linearly grows.
SMOOTH_LENGTH ($SLflag$) = (%H_linear% , H_min, L_min, normal_x, normal_y, normal_z, H_max)

H_min: minimum smoothing length on the given plane
L_min: stripe on top of the plane, where H is kept at the value of H_min

(normal_x , normal_y , normal_z): vector perpendicular to the plane. The norm of the vector gives dH/dr, i.e. the growth
rate of H when tending apart from the plane.

H_max: maximum smoothing length

MESHFREE - InputFiles - USER_common_variables - Smoothinglength -
SMOOTH_LENGTH - %H_radial%

342

%H_radial%
radial smoothing length distribution with respect to an infinite tube

Form an infinitely long tube of radius L_min and construct the smoothing length around the tube.

SMOOTH_LENGTH ($SLflag$) = (%H_radial% , H_min, L_min, axis_x, axis_y, axis_z, dH/dr, H_max)

H_min: minimum smoothing length

L_min: radius of the tube

(axis_x, axis_y , axis_z): direction of the tube
dH/dr: growth rate of H outside the tube

H_max: maximum smoothing length

MESHFREE - InputFiles - USER_common_variables - Smoothinglength -
SMOOTH_LENGTH - %H_ring%

%H_ring%
annular smooth length distribution with respect to a torus

Form a torus around which the smoothing length is constructed.
SMOOTH_LENGTH ($SLflag$) = (%H_ring% , H_min, L_min, dH/dr, n_x, n_y, n_z, H_max)

H_min: minimum H along the ring/torus
L_min: small radius of the torus
dH/dr: increase of smoothing length per distance from torus

(n_x,n_y, n_z): vector perpendicular to the plane in which the torus is placed. The length of this vector forms the big
radius of the torus.

H_max: maximal accepted smoothing length

MESHFREE - InputFiles - USER_common_variables - Smoothinglength -
SMOOTH_LENGTH - %H_spherical%

%H_spherical%
spherical smoothing length distribution around points or geometry elements

Form a ball of radius L_min and construct the smoothing length around it.
SMOOTH_LENGTH ($SLflag$) = (%H_spherical% , H_min, L_min, dH/dr, H_max)

H_min: minimum smoothing length
L_min: radius of "ball" within which the smoothing length is kept on the level of H_min
dH/dr: increase rate of H outside of the L_min-ball with respect to the (Euclidean) distance (based on unit lengths)

H_max: maximum smoothing length
343

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - USER_h_funct

USER_h_funct
choose either constant, locally variable, or adaptive smoothing length

Currently implemented:
« USER_h_funct = 'CONS' (constant, see CONS)
« USER_h_funct ='DSCR' (discrete, see DSCR))
« USER_h_funct="ADTV' (adaptive, see ADTV)
« USER_h_funct ='ADDS' (adaptive + discrete, see ADDS)

List of members:

CONS constant smoothing length defintion

DSCR discrete (locally variable) smoothing length definition
ADTV adaptive smoothing length definition

ADDS adaptive + discrete smoothing length definition

MESHFREE - InputFiles - USER_common_variables - SmoothingLength - USER_h_funct -
ADDS

ADDS

adaptive + discrete smoothing length definition

Experimental coupling of ADTV and DSCR: In each time step the minimum of the proposed smoothing length
%ind_h_adaptive% (ADTV) and the proposed
discrete smoothing length (DSCR) is used as the smoothing length.

USER_h_funct = 'ADDS'

USER_h_min = RealNumber

USER_h_max = anotherRealNumber

CODI_eq ($Material$,%ind_h_adaptive%) = [... some equation ...]

SMOOTH_LENGTH ($SLflag$) = (%H_BuiltinFunction%, ...)

INITDATA ($Material$,%ind_h_adaptive%) = [... some equation ...]

Analogously to ADTV, the proposed smoothing length value for the ADTYV -part is written into the index
%ind_h_adaptive% for each point.

The standard discrete smoothing length definitions can be used (see SMOOTH_LENGTH).

See also Equations and CODI .

This feature is helpful to construct a problem-specific initial smoothing length distribution.

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - USER_h funct -
ADTV

ADTV

adaptive smoothing length definition

Current experimental development is the adaptive smoothing length:

344

USER_h_funct ='ADTV'
USER_h_min = RealNumber
USER_h_max = anotherRealNumber

The idea here is to write a proposed smoothing length value for each point into the index %ind_h_adaptive% :

CODI_eq ($Material$,%ind_h_adaptive%) = [... some equation ...]

The following rules apply:
1.) This equation is evaluated at the end of each time step.
2.) At the beginning of the next time step, these values are copied to %ind_h% , and thus taken as the smoothing
length distribution for the new time step.
Warning: The new %ind_h% -values are not undertaken any further checking of consistency, currently, that
explicitely means:
3.) The user has to carefully verify the smoothing length distribution for the next time step. One way to go is given in
the example below.
4.) The method currently has one drawback: as the adaptive h-values are determined at the END of the time step,
there is no way
of defining the INITIAL h-distribution.
Current assumption: h_Initial = USER_h_max
A problem-specific initial smoothing length definition is possible by using ADDS (adaptive + discrete).

Example:
begin_alias{ }
llH_minll = ll0.1 n
llH_maXII = "0.5"

"HchangePerTimeStep" = "0.1"

"SpeedOfBox" = "4.0"

"dH_over_dr" ="0.15"

end_alias

USER_h funct ="'ADTV'

USER_h_min = &H_min&

USER_h_max = &H_max&

CODI_eq ($Mat1$,%indU_absgradV%) = [sqrt(dYdx(%ind_v(1)%)*2+dYdy(%ind_v(1)%)*2+dYdx(%ind_v(2)%
)"2+dYdy(%ind_v(2)%)"2)* &H_max& / &SpeedOfBox&] # some measure of gradient of velocity

CODI_eq ($Mat1$,%indU_h_1stguess%) = [max(&H_max& *(1-Y%indU_absgradV%) , &H_min&)] # set a definition
of adaptive smoothing length

CODI_eq ($Mat1$,%indU_h_smooth%) = [max(min(Y%indU_h_1stguess% , (1+ &HchangePerTimeStep&)*Y
%ind_h%) , (1- &HchangePerTimeStep&)*Y %ind_h%)] # make sure H varies not more than a given threshold from
time step to time setp

CODI_min_max ($Mat1$,%indU_h_smooth%) = (-10000,10000, &dH_over_dr&) # restrict local slope of the adtipte
smoothinge length function

CODI_eq ($Mat1$,%ind_h_adaptive%) = [Y%indU_h_smooth%] # copy the constructed function to
%ind_h_adaptive%

See also Equations and CODI .

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - USER_h funct -
CONS

CONS

constant smoothing length defintion

For constant smoothing length choose:

345

USER_h_funct = 'CONS'
USER_h_min = RealNumber
USER_h_max = sameRealNumber

MESHFREE - InputFiles - USER_common_variables - SmoothingLength - USER_h_funct -
DSCR

DSCR

discrete (locally variable) smoothing length definition

For locally variable smoothing length choose:

USER_h_funct = 'DSCR'

SMOOTH_LENGTH ($SLflag$) = (%H_BuiltinFunction%, ...)
USER_h_min = RealNumber

USER_h_max = anotherRealNumber

For the different options for %H_BuiltinFunction% see SMOOTH_LENGTH .

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - USER_h max
USER_h_max

maximum allowed smoothing length

USER_h_max = RealNumber

MESHFREE - InputFiles - USER_common_variables - Smoothinglength - USER_h_min

USER _h_min

minimum allowed smoothing length

USER_h_min = RealNumber

MESHFREE - InputFiles - USER_common_variables - Tim ntrol
3.1.32. TimeControl

time control options

The possible commands for initial time, final time, and time step control are described below.

As Meshfree performs a transient simulation, the simulation time interval must be specified in any setting.

Tstart = 0 #Simulation running from t=0 seconds
Tend =21 # ... to t=21 seconds

Optionally, the simulation can be performed for a maximum of Timelntegration_N_final timesteps. The simulation will stop
if either Timelntegration_N_final timesteps have been performed or the simulation time has reached Tend .
Non-adaptive Timestep size

346

The Ucv-parameter
DELT_dt_variable = 0 (default)

indicates that the timestep size does not automatically adapt to the flow characteristics. (e.g. CFL-conditions)

Meshfree steadily increases the timestep size from DELT_dt start until DELT_dt is reached. The cv-parameter
time_step_gain limits the change rate of the timestep size. If DELT_dt is smaller than DELT_dt_start , then the timestep
size is constant DELT dt start .

Adaptive timestep size (recommended)

The Ucv-parameter
DELT_dt_variable = 1

indicates that the timestep size automatically adapts to the flow characteristics in the simulation such that CFL conditions
are met, see parameter COEFF_dt.

Also here, the cv-parameters time_step_loss and time_step_gain limit the change rate of the timestep size.

Additional time timestep size criterions can be defined per material with the parameter DELT_dt_AddCond .

Good to know:
o Apart from DELT_dt_AddCond , all parameters are read exactly once at the beginning of the simulation and can
thus only contain scalar values (not equations!)
« The local proposed timestep size is calculated per point and is available in the index %ind_dt_local% .

List of members:

Tstart (compulsory) initial time of a simulation

Tend (compulsory) maximum final time of a simulation
Timelntegration_N_final (optional) final time step of a simulation

DELT_dt (compulsory) maximum allowed time step size
DELT_dt_start (compulsory) time step size at the start of a simulation
DELT_dt_variable (optional) let MESHFREE control the time step size
DELT_dt_AddCond (optional) defines a custom time step criterion

MESHFREE - InputFiles - USER_common_variables - TimeControl - DELT dt

DELT_dt

(compulsory) maximum allowed time step size

This value is compulsory. If not given, MESHFREE will stop.
DELT_dt = 1.0e-2

See DELT dt variable for further details.

MESHFREE - InputFiles - USER_common_variables - TimeControl - DELT_ dt AddCond

DELT dt AddCond

(optional) defines a custom time step criterion

DELT_dt_AddCond (SMATERIALS) = RHS

347

If defined, MESHFREE will evaluate the given RightHandSideExpression at the start of each timestep and respect this
value as an additional criterion for the maximum timestep size of the material with the specified tag.

Good to know:

« It is only possible to define DELT _dit AddCond once per material, hence for incorporationg multiple conditions,
these must be included into the RHS of the equation.

MESHFREE - InputFiles - USER_common_variables - TimeControl - DELT dt start

DELT_dt_start
(compulsory) time step size at the start of a simulation

This value is compulsory. If not given, MESHFREE will stop.

DELT dt start = 1.0e-2

To avoid instabilities, its value has to be adapted to the chosen point cloud resolution and relevant velocity.
This value is also used in the first time cycle after restart.

Note: If DELT_dt_start is set to a negative number, then at restart the simulation is continued with the
same time step size as at the time the restart file was written.

MESHFREE - InputFiles - USER_common_variables - TimeControl - DELT dt variable

DELT_dt_variable
(optional) let MESHFREE control the time step size

DELT_dt variable = 1
default: DELT dt variable =0

If DELT_dt variable == 1, MESHFREE controls the time step size by itself but does not exceed DELT _dt (adaptive time
stepping).

If DELT _dt variable == 0, MESHFREE steadily increases the time step size from DELT_dt_start until DELT_dt is reached.

MESHFREE - InputFiles - USER_common_variables - TimeControl - Tend
Tend

(compulsory) maximum final time of a simulation

This value is compulsory. If not given, MESHFREE will stop.
Tend = 1

A simulation will stop if either Timelntegration_N_final or Tend is reached.

MESHFREE - InputFiles - USER _common_variables - TimeConirol - Timelntegration N_final

Timelntegration_N_final
(optional) final time step of a simulation

This value is optional. If set, the simulation stops after the specified number of time steps.

348

Timelntegration_N_final = 1000

A simulation will stop if either Timelntegration_N_final or Tend is reached.

MESHFREE - InputFiles - USER_common_variables - TimeControl - Tstart

Tstart
(compulsory) initial time of a simulation

This value is compulsory. If not given, MESHFREE will stop.

Tstart =0

MESHFREE - InputFiles - USER _common_variables - _ DEFAULT_configuration_file

3.1.33. _ DEFAULT_configuration_file

allows to provide Ucv_DEFAULT.dat as a generalistic/default definition

The default file allows to define default setting for groups/portions of geometry-items, fulfilling a naming convention.

With this, MESHFREE is ready to only be provided a geometry file, and start a simulation without any further input

definition.

The default definition file has a unique name: "Ucv_DEFAULT.dat". The general rules to bind it in are:

« if, in the current project folder, there is a file with the name "Ucv_DEFAULT.dat", then this file is read-in first, before

USER_common_variables.dat is read in

« if the environment variable MESHFREE_USE_DEFAULT_FILE=true, the program will use the Ucv_DEFAULT.dat .

In this case,

o EITHER the environment variable MESHFREE_Ucv_DEFAULT is set, then it points to the Ucv_DEFAULT-file

to be used (i.e. the users have the chance to use their general default configuration,

o OR the program will automatically generate a Ucv_DEFAULT.dat in the hope, it will cover the needs of the

current appliocation.

In Ucv_DEFAULT.dat, one is free to pre-define anything. Most useful it is to define the "_DEFAULT" alias names.

The definition of an alias with the suffix "_DEFAULT" is a recognized as a default definition for a certain group of geometry.

For example:

begin_alias{ }

"wall_DEFAULT" = " BC$BC_wall_DEFAULT$ ACTIVES$InitAlways DEAFULT$ IDENT%BND_slip%
MAT&mat1_DEFAULT& TOUCH%TOUCH_always% MOVE$MOVE_DEFAULT$ LAYERO CHAMBER1 "
"bot*_ DEFAULT" =" &wall_DEFAULT& "

"in*_DEFAULT" = " BC$BC_in_DEFAULT$ ACTIVES$InitAlways DEAFULT$ IDENT%BND_outflow%
MAT&mat1_DEFAULT& TOUCH%TOUCH_always% MOVE$MOVE_DEFAULT$ LAYERO CHAMBERHT
POSTPROCESS$PP_in_DEFAULTS$ "

"out* DEFAULT" =" BC$BC_out DEFAULT$ ACTIVES$InitAlways_ DEAFULT$ IDENT%BND_outflow%
MAT&mat1_DEFAULT& TOUCH%TOUCH_always% MOVE$MOVE_DEFAULT$ LAYERO CHAMBERHT
POSTPROCESS$PP_out DEFAULTS$ "

"top*_DEFAULT" =" &wall_DEFAULT& "

"front* DEFAULT" = " &wall_DEFAULT& "

"back* DEFAULT" =" &wall_DEFAULT& "

end_alias

For example, the alias-definition "in*_DEFAULT" matches for all geometry items, starting with "in", such as "inflow"

349

Please also refer to AliasForGeometryltems .

See the comprehensive example and have a special look into Ucv_DEFAULT.dat .
See the classical USER_common_variables.dat, where the user only has to provide the geometry file. If the
Ucv_DEFAULT is general enought, no additional information is given and the simulation can be started immediately.

DOWNLOAD COMPREHENSIVE EXAMPLE

MESHFREE - InputFiles - USER_common_variables - __ _GeneralRemarks_

3.1.34. _ GeneralRemarks___

general remarks upon the syntax within UCYV files

The USER_common_variables file utilizes its own scripting syntax and this page serves as overview over the syntax in
USER_common_variables.dat (UCV).

Warning: First of all, the scripting language is case sensitive .

There are three major concepts involved: variables, assignments (in order to assign boundary conditions), and
environments (for defining things that naturally do not fit into one line).

Variables

There are four types of variables that can be referenced within the UCV files:

- &AliasVariableName& references an alias variable defined by the user as string in the alias section, see ALIAS ,
or in the construct section, see ConstructClause .

« $AcronymVariableName$ refers to an acronym or soft variable ; MESHFREE automatically assigns consecutive
integer values to the $...$-variables in the order they are appearing within the UCV.

« %MESHFREEVariableName% refers to MESHFREE internal variables such as the index variables (see Indices)
and constants (see _ Constants__). Generally, the user cannot define these variables (the only exception is
UserDefinedIndices).

- @SystemVariable@ represents system or software information .

More information in Variables .
Assignments

Assignments in the UCV can take the following forms. The number of arguments depends on the LHS statement.
LHS = RHS: left hand side with no argument

The assignment LHS = RHS (left hand side with no argument) can have the two following meanings:
« A value is assigned to a parameter, e.g. the end time for the simulation shall be 10 seconds:

Tend = 10.0 # set parameter Tend to 10.0 seconds

« A new item of LHS is added and an implicit enumeration takes place, e.g. SAVE_ITEM . For example, the code
snippet

SAVE_ITEM = RHS1 # add a save item for RHS1
SAVE_ITEM = RHS2 # add a save item for RHS2

adds two SAVE_ITEMs, one for RHS1 and one for RHS2.

LHS(arg) = RHS: left hand side with one argument

In the assignment LHS(arg) = RHS , the right hand side is assigned to the argument regarding the LHS, e.g.
- PhysicalProperties : the density of the material referenced by acronym $WATER$ is 1000.00:

density(SWATERS) = 1000.00

350

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/OnlineExamples/MESHFREE.InputFiles.USER_common_variables.__DEFAULT_configuration_file__

With that, also the acronym variable $WATERS is automatically initialized and can be referenced in the alias section
with the MAT tag.
« BoundaryConditions : a boundary condition for the temperature defined for the acronym BC_wall :

BC_T (BC_wall) = RHS

With that, also the acronym variable BC_wall is automatically initialized and can be referenced in the alias section
with the BC tag.

LHS(arg1,arg2) = RHS: left hand side with two arguments

In the assignment LHS(arg1,arg2) = RHS , the right hand side is assigned to the two arguments regarding the LHS, e.g.
- Initial conditions for a quantity, e.g. the initial temperature (referenced by internal variable %ind_T%) in the
simulation of the material (referenced with acronym $WATERS$) is 310.8 Kelvin:

INITDATA ($SWATERS ,%ind_T%) = 310.8

« see the documentation of CODI for more examples of two arguments on the LHS.

So far, we have not tackled the RHS , for this please refer to RightHandSideExpression .
Environments

In the UCV syntax, there are also environments to provide certain functionalities. An environment starts with
begin_environment{"nameOfEnvironment"}, ends with end_environment and can be referred to by the name
"nameOfEnvironment". Here are some examples for environments:

o ALIAS :

begin_alias{ "optionalName"}
"alias1" =" String to replace &alias1& "
end_alias

« BoundaryElements :

begin_boundary_elements{ "optionalName"}
includef ...
end_boundary_elements

« Equations: The equation requires a name in order to be referenced.

begin_equation{ "nameOfEquation"}
some equation ...
end_equation

Execution control for statements
« Selection : Execution of statements based on a condition, decision by the value of an alias variable which

statements to execute in a UCV file. (Similar to If-else)
« Loops : Repetition of statements, N-times repetition of statements with an iterator variable.

Options for structuring UCVs
Sometimes UCYV files can get very complex and the individual lines get very long. Here are some tools for structuring.

« include_Ucv{ : includes the specified file into the UCV File.
« ContinuationLines : for line breaking of long statements.

351

List of members:

Variables variables used in the USER_common_variables input file

ContinuationLines break long lines into shorter ones in order to have more readable input files

RightHandSideExpression syntax for right hand side expressions in USER_common_variables
MESHFREE - InputFiles - USER _common_variables - __ GeneralRemarks -

ContinuationLines

ContinuationLines
break long lines into shorter ones in order to have more readable input files

Long lines can be split into shorter ones, if that improves readability of the input file. The token "..." at the end of the line
(BUT BEFORE THE COMMENTS!!!) tells
the file reader that the next line in file still belongs to the present line.

Example: The DropletSource can be written in one-line form

DropletSource (1) = (0.05, [(1.7* &Hmin&)3], [4.5+rand(1)*(1.7+0.3)], [-0.2+rand(1)*(0.4+0.3)], [0+rand(1)*(1+0.3)], 1,
$Mat1$)

The same in multiple-line form, one can easily add remarks to each of the items in the brackets

DropletSource (1) = (0.05, ... # how much droplet volume per time is to be created
[(1.7* &Hmin&)"3], ... # droplet size to be created

[4.5+rand(1)*(1.7+0.3)], ... # x-position (center) of the new droplet
[-0.2+rand(1)*(0.4+0.3)], ... # y-position (center) of the new droplet
[0+rand(1)*(1+0.3)], ... # z-position (center) of the new droplet

1, ... # put the new droplet in this chamber

$Mat1$... # new droplet to obtain this material flag

)

MESHFREE - InputFiles - USER_common_variables - __ GeneralRemarks -
RightHandSideExpression

RightHandSideExpression

syntax for right hand side expressions in USER_common_variables

Right hand side expressions are all expressions on the right of the "="-sign.
For example, an expression in USER_common_variables could look like this:
BC v ($...$) = (Expression0, Expressioni, Expression2, ...)

Each of the expressions, separated by comma, can be of three different types.
1.) Arithmetic expression in-between []-brackets: [... Y%ind_...% ...]
Example:

BC v($.%)=(...,[-.Y%Ind_..% ...], ...)
2.) Link to an existing equation: equn{$EqnName$}

Example:
BC_ v ($..$)=(...,equn{ $EgnName$ }, ...)

352

In this case, the equation needs to be defined somewhere in the input file:

begin_equation{ $EqnName$ }
BodyOfEquation
end_equation

3.) Link to an existing curve: curve{$CrvName$}depvar{%ind_Var%}

Example:
BC_v ($..$)=(..., curve{ $CrvName$ }, ...)

In this case, the curve must be defined somewhere in the input file:

begin_curve{ $CrvName$ }, depvar_default{ %ind_Var%}
BodyOfCurve
end_curve

%ind_Var% defines the quantity/entity the left column of the curve is representing (independent variable).
See also 1D_Curves .

MESHFREE - InputFiles - USER_common_variables - __ _GeneralRemarks - Variabl
Variables

variables used in the USER_common_variables input file

There are currently four types of variables that the user may use in the USER_common_variables file:

- &AliasVariableName& references an alias variable, to be defined in the alias section (pure string replacement
definitions), see ALIAS and ConstructClause

- $AcronymVariableName$ refers to an acronym; MESHFREE assigns consecutive integer values to the $...$-
varibales given by the user

« %MFvariableName% refers to a variable predefined by MESHFREE , also representing integer values; among
others, the index variables (see Indices) and the constant (see _ Constants) are of this type. The user cannot
define these variables, with the exception of UserDefinedIndices .

« @SYSTEMvariable@ contain system or software information

Variable Types
Alias Variable: &AliasVariableName&

Alias variables are defined by the user in the alias section of the USER_common_variables file. The values of these
variables are strings. At any position where the variable is referenced by &AliasVariableName& , the string is placed.

Example 1: Define the scaler alias variable v_inflow to be "10.0".

begin_alias{ "ModelParameter"} #giving an intuitive name - no further meaning
"v_inflow" = "10.0" #defines the alias variable
begin_alias{ "ModelParameter"}

This definition can be used, for example in a boundary condition:
BC_v ($inflow$) = (%BND_inflow% , &v_inflow&)

&v_inflow& is then string-replaced with the definition "10.0" and becomes:
BC_v ($inflow$) = (%BND_inflow% , 10.0)

Example 2: Define the vectorial alias variable Class and use it to define different geometry parts (see
353

AliasForGeometryltems).

begin_alias{ }
"Class" = "inflow, wall, outflow" # definition of geometry class

"&Class(1)&" =" BC$BC _in$..." # definition of inflow alias
"&Class(2)&" =" BCBC_wall ..." # definition of wall alias
"&Class(3)&" =" BCBC_out ..." # definition of outflow alias
end_alias

Good to know:

« The alias definition plays a central role in connecting the definition of model parameters to boundary elements: see
AliasForGeometryltems .

« The alias definition can contain nested statements, in particular, an alias definition can contain a reference to
another alias variable. It is important that these definitions can be uniquely resolved.

« Execution control for statements in the USER _common_variables can be done based on the value of an alias
variable, see Selection .

« The usage of wildcards in the name of the alias variable is also possible in AliasForGeometryltems .

Acronym Variable: $AcronymVariableName$

Acronym variables (or soft variables) are defined by the user by using them in a left hand side expression. They can then
be referred to by $AcronymVariableName$. Internally, in MESHFREE they are handled as integers, but for the user their
actual value is not of importance as these variables are used as labels.

Example 3: Defines an integration to determine the total mass. The soft variable $MassTotal$ is also automatically
initialized then.

INTEGRATION ($MassTotal$) = (%INTEGRATION_INT% , [Y %ind_r%], $MatUSER$, %INTEGRATION_Header%,
"Total Mass")

If one now wants to use the integration in another place, e.g. an equation, then it can be referred to using the soft variable
$MassTotal$:

woo [... integ($MassTotal$) ...] ...

MESHFREE Internal Variable: %MFvariableName%

MESHFREE internal variables are predefined in MESHFREE , also internally stored as integer values. These are
- the index variables, see Indices
- the constants, see _ Constants__
« and the UserDefinedIndices (the user can steer what will be stored in these Indices)

Example 4: In an equation accessing the attribute density of a point in an equation, by using the index %ind_r% :
i [Y %iInd 1% ...] ...

System Variable: @SYSTEMvariable@

A system variable contains system or software information. Currently, the following features are implemented:
o @VERSION@ - returns a string with the version number of MESHFREE
o @DATE@ - returns a string with the date at MESHFREE startup in the form YYYY.MM.DD
o @TIME@ - returns a string with the time at MESHFREE startup in the form HH:MM:SS
« @CLPARAM@ - returns the string passed via the CommandLine option --clparam or -clp
o @ENV(NameOfEnvironmentVariable)@ - returns the value of the environment variable with the given name
o @CV(cv_variable)@ - returns the status of a variable from common_variables
- @[equation_strng]@ - evaluates the given equation, see Equations

Example 5:if USER is the environment variable for the user, then one could incorporate system information in the
following way in the save path SAVE_path in the following way:

354

SAVE_path =

'results___ version=@VERSION@___user=@ENV(USER)@___MPIl=@Ireal(%MPI_NbProcesses%)]@_OMP=
@[real(%OMP_NbProcesses%)|@__ '

save path containing the user name,

the MESHFREE -version

the number of MPl and OMP processes

Logging

At the startup of MESHFREE the hidden log folder .FPM_log FPM ID=ID_of runis created and information on the values
assigned to the variables is stored in the following files therein:
o List of Aliases.log : contains the alias section. As nested definitions of alias section are also possible, this files
contains the completely resolved definitions.
« List of Acronyms.log : the integer values for acronyms, ordered by usage: BCON, MOVE, MAT , SMOO (
SmoothingLength), POSTBND (PostProcessing), ACTIVE , TOUCH , EQUN and CURV.
« List of indices.log : Contains all indices that are referencing to entries of the Y-array. Some of these indices might
be sharing an integer value if they belong to different solvers. This is due to memory reasons.
o List of FPMuvariables.log : Contains all identifiers of the form %...% (indices, constants and others). Useful if one
wants, for example, decode the integer value Y %ind_kob% to a boundary flag like %BND_none% (inner Point),
%BND_wall% (wall), %BND_free% (free surface), ...

MESHFREE - InputFiles - USER_common_variables - _ Parameters

3.1.35. _ Parameters__

CV-parameters that can also be set in UCV

This page is under development. The list of parameters will be completed gradually.

Note:
- Some CV-parameters (see common_variables) can also be set in USER_common_variables (UCV). The UCV-
definition is dominant and overwrites the
CV-definition (see warnings file in the simulation folder).
- Some of these parameters can be set chamberwise, which can be necessary for multi-phase simulations. If such a
parameter is
not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

List of members:
BEmap_DefaultValue Default value of BE_MAP (UCV)

BUBBLE_DoTheManagement (chamberwise) switch regarding bubble analysis (UCV)

BUBBLE_EnforceAveragePre fix average pressure for all bubbles (UCV)

ssure
BUBBLE_pOffset define offset pressure for bubble pressure-on-volume analysis (UCV)

COEFF_dt (chamberwise) factor for computation of time step size (UCV)

COEFF_dt_coll time step criterion from interaction model (DROPLETPHASE only) (UCV)
COEFF_dt_d30 time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCV)
COEFF_dt_Darcy define the virtual time step size for applications with Darcy (Brinkman) term (UCV)
COEFF_dt_free (experimental) factor for exaggerated movement of the free surface (UCV)

355

COEFF_dt_SurfaceTension_
A

COEFF_dt_SurfaceTension__
B

COEFF_dt_SurfaceTension_
C

COEFF_dt_virt
COEFF_mue
COMP_CosEdgeAngle

COMP_DoOrganizeOnlyAfter
HowManyCycles

COMP_DropletphaseSubcycl
es

COMP_DropletphaseWithDist
urbance

COMP_dt_indep

COMP_facSmooth_Eta
COMP_nbSmooth_Eta
COMP_RemeshBoundary
COMP_TypeSmooth_Eta
COMP_TypeSmooth_Rho
compute_FS
compute_phase_boundary

CONTROL_StopAfterReading
Geometry

damping_p_corr

DIFFOP_ConsistentGradient

DIFFOP_kernel_Gradient

DIFFOP_kernel_Laplace

DIFFOP_kernel_Neumann

DIFFOP_kernel_Transport

time step criterion for surface tension, parameter A (UCV)

time step criterion for surface tension, parameter B (UCV)

(experimental) time step criterion for surface tension, parameter C (UCV)

(chamberwise) scaling factor for the virtual time step size (UCV)
scaling factor for numerical viscosity (UCV)
(chamberwise) parameter to identify edges in geometry (UCV)

do the point cloud organization only after how many time cycles (UCV)

switch for DROPLETPHASE subcycling (UCV)

disturbance for DROPLETPHASE (UCV)

parameter to switch on independent time stepping for two-phase LIQUID simulations with
v-- and vp- (UCV)

parameter for weight kernel definition for smoothing of viscosity (UCV)
number of smoothing cycles for effective and total viscosity (UCV)
parameter to control remeshing of IGES-files (UCV)

type for smoothing of viscosity (UCV)

type for smoothing of density (UCV)

(chamberwise) switch to compute free surfaces (UCV)

(obsolete) invoke detection of interface connections (UCV)

stops the MESHFREE program after geometry is read (UCV)

(chamberwise) parameter to reduce the dynamic pressure as initial guess for the next time
level (UCV)

consistent gradient in the sense d/dn = n*grad (UCV)

(chamberwise) factor for the weight kernel for the least squares approximation stencils for
gradients (UCV)

(chamberwise) factor for the weight kernel for the least squares approximation stencils for
the Laplacian (UCV)

(chamberwise) factor for the weight kernel for the least squares approximation stencils for
Neumann operators (UCV)

(chamberwise) factor for the weight kernel for the least squares approximation stencils for
the transport operators (UCV)

356

DIFFOP_laplace

DIFFOP_Neumann_ExcludeB
ND

DIFFOP_WeightReductionInC

aseOfDeactivation

DP_UseOnlyRepulsiveContac
tForce

eps_p
eps_phyd
eps_T
eps_v

FLIQUID_ConsistentPressure
_Version

FOFTLIQUID_AdditionalCorre

ctionLoops
IGES_Accuracy
IGES_HealCorruptFaces
LINEQN_scaling
LINEQN_solver

LINEQN_solver_ScalarSyste
ms

max_N_stencil

MEMORIZE_ResetReadFlag
ord_eval

ord_gradient

ord_laplace
PHASE_distinction

PointDspIMethod

radius_hole

rel_dist_bound
RepairGeometry
RepresentativeMass_iData

restartnewBE_filling

type of least squares approximation stencils for the Laplacian (UCV)

(chamberwise) parameter to exclude boundary points from the neighborhood for the
computation of the Neumann operators (UCV)

(chamberwise) parameter to reduce the weight of a neighbor point in case of deactivation

(UCVv)

switch regarding attractive forces in spring-damper model (UCV)

precision in the breaking criterion for the linear systems of pressure (UCV)

precision in the breaking criterion for the linear systems of hydrostatic pressure (UCV)
precision in the breaking criterion for the linear systems of temperature (UCV)
precision in the breaking criterion for the linear systems of velocity (UCV)

version how to compute the consistent pressure (UCV)

additional velocity correction loops (UCV)

relative accuracy for consistency checks of IGES-faces (UCV)

allow a certain depth of healing triangulation of IGES faces by refinement (UCV)
choose the way how to scale/normalize the linear systems (UCV)

linear solver to be used for the coupled vp- or v-- system (UCV)

linear solver to be used for the scalar systems like pressure, temperature, etc. (UCV)

maximum number of neighbor points accepted for stencil computation and numerics
(Ucv)

reset frequency for MEMORIZE_Read flag (UCV)

define approximation order for refill points (UCV)

(chamberwise) approximation order of the gradient operators (UCV)
define approximation order of the Laplace operators (UCV)

invoke detection of interface connections (UCV)

(experimental) Choice among different ways to move points in Lagrangian framework
(UCVv)

relative allowed hole size (UCV)
relative distance of neighboring points at boundaries for initial filling (UCV)
enforce clustering of geometry nodes upon read-in (UCV)

(chamberwise) parameter for the RepresentativeMass algorithm (UCV)

(chamberwise) parameter to control filling of new boundary elements upon restart (UCV)

SAMG_Setupreuse accelerates SAMG solver for quasi-stationary point clouds (UCV)
SAVE_atEndOfTimestep choose to save data for visualization at the end of time steps instead of at the start (UCV)
SAVE_PrecisionTimestepFile choose the precision (number of digits) for values in the timestep file (UCV)

SCAN_ClustersOfConnectivity ~ (chamberwise) switch on cluster checking of MESHFREE point cloud by neighborhood
connectivity (UCV)

STRESSTENSOR_Variante version of stress tensor time integration (UCV)

STRESSTENSOR Variante_ factor in stress tensor time integration wrt the shear modulus (UCV)
Factor

V00_SmoothDivV Chorin projection: smooth the local values of div(v) before going into the correction
pressure computation (UCV)

VOLUME_correction (chamberwise) parameter to correct volume by GLOBALLY adjusting the divergence of
velocity term (UCV)

VOLUME_correction_FreeSur (chamberwise) parameter to correct volume by tiny global lifting of the free surface (UCV)
face

VOLUME_ correction_local (chamberwise) parameter to correct volume by LOCALLY adjusting the divergence of
velocity term due to representative mass balance (UCV)

VPO_VelocityCorrection (chamberwise) switch to compute free surfaces (UCV)

MESHFREE - InputFiles - USER _common_variables - _ Parameters - BEmap DefaultValue

BEmap_DefaultValue
Default value of BE_MAP (UCV)

BEmap_DefaultValue = 0.0
Default: BEmap_DefaultValue = -888888.0

Defines the value which is returned whenever BE_MAP () does not find any points close to the BE centroid or all points
have been filtered out.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
BUBBLE DoTheManagement

BUBBLE_DoTheManagement
(chamberwise) switch regarding bubble analysis (UCV)

BUBBLE_DoTheManagement = 1

Default: BUBBLE_DoTheManagement = 0
Allowed values: BUBBLE_DoTheManagement = 0, 1, 2 (see BubbleAlgorithm)

OPTIONAL SECOND DIGIT: switch off bubble consistency checks
BUBBLE_DoTheManagement = 1 1

Default value = 0

358

If put to 1, then consistency checks for bubbles, concerning their re-configuration, are switched off. For example, one of
these checks is:
If a new bubble forms out of two old bubbles, then the new bubble is invalid, if one of the old bubbles is invalid (see
BubbleVolume).

OPTIONAL THIRD DIGIT: switch off implicit pressure computation
BUBBLE_DoTheManagement = 11 1

Default value = 0
If put to 1, implicit computation of bubble pressure is switched off, see BubbleAlgorithm (BubblelmplicitPressure and
BubbleSemiimplicitPressure).

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER),
that is

BUBBLE_DoTheManagement (i) = 1 # i is the chamber index

If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
BUBBLE_ EnforceAveragePressure

BUBBLE_EnforceAveragePressure
fix average pressure for all bubbles (UCV)

BUBBLE_EnforceAveragePressure = 1.0e5 # atmospheric pressure

In a closed computational domain with fixed amount of gas and air (for example tank half full with liquid),
it makes sense to fix the average pressure of the bubbles as a whole. l.e., for all times, we require

Nbubb]t:g

Z pimbble,lo.‘. (T)V?.(f) = paveragevmtal (f)
i

If a positive number is given, all bubbles' pressure values are corrected by a constant value such that the average
pressure constraint is satisfied.

MESHFREE - InputFiles - USER_common_variables - _ Parameters - BUBBLE pOffset

BUBBLE_pOffset

define offset pressure for bubble pressure-on-volume analysis (UCV)

BUBBLE_pOffset = 1.0e5 # atmospheric pressure

The bubble’s pressure-volume-law is

Phubble,tot () * Vbubble (t) = const.

based on the bubbles total interior pressure.

With the pressure offset, we are able to work with any reference pressure, using the pressure
offset to map the pressure analysis to the correct total pressure.

(Poubble(t) + Pofiset)” * Vobubble(t) = const.

359

MESHFREE - InputFiles - USER_common_variables - _ Parameters - COEFF dt Darcy

COEFF_dt_Darcy

define the virtual time step size for applications with Darcy (Brinkman) term (UCV)

COEFF_dt_Darcy = 0.1
Default: COEFF_dt_Darcy = 1.0

The virtual time step size for the correction pressure computation in case of a Darcy term is present, is computed as
Atz = COEFFdtDarcy - At

See v-- and vp- for details, especially look for Atg .

Note: Actually, it makes sense to choose this value < 1 only in the case of vp- . In the other cases, it will
most probably lead to fluctuating numerical solutions for the dynamic pressure.

MESHFREE - InputFiles - USER_common_ variables - __ Parameters -
COEFF_dt_SurfaceTension_A

COEFF _dt_SurfaceTension A
time step criterion for surface tension, parameter A (UCV)

COEFF_dt_SurfaceTension A =1.0
Default: COEFF_dt_SurfaceTension A =0.5

The whole time step criterion is derived in DOCUMATH_TimeStepCriterionSurfaceTension.pdf ,
the present parameter represents the parameter 4 within this document.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COEFF_dt_SurfaceTension_B

COEFF_dt_SurfaceTension_B

time step criterion for surface tension, parameter B (UCV)

COEFF_dt_SurfaceTension B =1.0
Default: COEFF _dt SurfaceTension B =0.5

The whole time step criterion is derived in DOCUMATH_TimeStepCriterionSurfaceTension.pdf ,
the present parameter represents the parameter B within this document.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COEFF_dt_SurfaceTension_C

COEFF_dt_SurfaceTension_C
(experimental) time step criterion for surface tension, parameter C (UCV)

COEFF_dt_SurfaceTension_C = 20.0

360

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_TimeStepCriterionSurfaceTension.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_TimeStepCriterionSurfaceTension.pdf

Default: COEFF _dt SurfaceTension C =10.0

The whole time step criterion is derived in DOCUMATH_TimeStepCriterionSurfaceTension.pdf ,
the present parameter represents the parameter B within this document.

Warning: This parameter was introduced during the development of the free surface functionality of MESHFREE . It seems
to be obsolete, as it should be given
automatically by the construction of the differential operators. Use this parameter only for testing.

MESHFREE - InputFiles - USER common variables - _ Parameters - COEFF dt
COEFF_dt

(chamberwise) factor for computation of time step size (UCV)

COEFF_dt = 0.1
Default: COEFF_dt =0.2

In MESHFREE , each point computes his own local, temporal time step size by

R hi 1
dt°°* = COEFFdt - min | —— ([——] - phi}
[will " llggll™ Voo - v

The first term is the typical CFL condition (MESHFREE point shall not move more than CQEFFdt - k; per time step.
The second term comes from gravity waves.

The third term is motivated by surface waves due to surface tension. The complete derivation of this term is to be found in
DOCUMATH_TimeStepCriterionSurfaceTension.pdf .

The global time step size is finally computed by
dfglabal = max (dfl_acal)
) i=1..N ~ ¢

The time step restrictions come due to the fact, that the point movement in MESHFREE is explicit.

For steering of the time step size in USER_common_variables , see TimeControl .

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common variables - _ Parameters - COEFF _dt coll

COEFF_dt_coll
time step criterion from interaction model (DROPLETPHASE only) (UCV)

COEFF_dt_coll = 0.1

Default: COEFF_dt_coll = 0.0 (off)

For DROPLETPHASE particles that are potentially in a collision with other particles or a wall, the timestep is reduced by
this criterion in order to guarantee a good timestep resolution of the collision.

If this time step criterion leads to a very strong time step restriction, performance can be improved by using
COMP_DropletphaseSubcycles .

MESHFREE - InputFiles - USER_common_variables - _ Parameters - COEFF _dt d30

COEFF_dt_d30
time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCV)

361

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_TimeStepCriterionSurfaceTension.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_TimeStepCriterionSurfaceTension.pdf

COEFF_dt_d30=0.5

Default: COEFF_dt_d30 = 0.0 (off)

If a value bigger than zero is specified for this parameter, the timestep criterion
D;

dt||vil|| = C,ﬂn? i

is introduced. This time step criterion is particularly relevant in case DROPLETPHASE interactions are computed.

If this time step criterion leads to a very strong time step restriction, performance can be improved by using
COMP_DropletphaseSubcycles .

MESHFREE - InputFiles - USER_common_variables - _ Parameters - COEFF dt free

COEFF_dt_free

(experimental) factor for exaggerated movement of the free surface (UCV)

COEFF_dt free =3.0
Default: COEFF _dt free =1.0
In the example above, the free surface travels three times as fast as given by the velocity.

Note: This parameter was introduced for faster finding of the steady state of a flow in conjunction with EULER .
For LAGRANGE , it does not make sense to use it.

MESHFREE - InputFiles - USER_common_variables - _ Parameters - COEFF _dt virt

COEFF_dt_virt

(chamberwise) scaling factor for the virtual time step size (UCV)

COEFF_dt_virt = 0.01
Default: COEFF_dt_virt =1.0
See VirtualTimeStepSize for the mathematical/numerical algorithm.

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER _common_variables - _ Parameters - COEFF_mue

COEFF_mue
scaling factor for numerical viscosity (UCV)

COEFF_mue corresponds to the paramter C in the definition of the numerical viscosity, see %ind_ETA sm% . For the use
in the numerical scheme, see v-- and vp- .

COEFF_mue = 0.5
Default: COEFF_mue =1.0

Note: Positive values of COEFF_mue<1.0 should lead to results that are closer to the actual solution. However, this can
362

lead to
numerical instabilities. In this case, COEFF_mue should be enlarged. If required, also values >1.0 can be chosen, e.g. 2 or
4,

MESHFREE - InputFiles - USER _common_variables - _ Parameters - COMP_CosEdgeAngle

COMP_CosEdgeAngle

(chamberwise) parameter to identify edges in geometry (UCV)

COMP_CosEdgeAngle = 0.5
Default: COMP_CosEdgeAngle = 0.8

Edges between boundary elements are detected if
cos(nq -n2) < COMP_CosEdgeAngle

with 721, 22 the normals of the associated boundary points.

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COMP_DoOrganizeOnlyAfterHowManyCycles

COMP_DoOrganizeOnlyAfterHowManyCycles
do the point cloud organization only after how many time cycles (UCV)

COMP_DoOrganizeOnlyAfterHowManyCycles = 3
Default: COMP_DoOrganizeOnlyAfterHowManyCycles = 1

This feature tries to prevent adding or removing operations of MESHFREE points.
The whole neighborhood relationship is kept.
The points, however, are moved as usual with their transport velocity.

This feature is especially useful if the pointcloud moved only little compared to the smoothing length.
Reasons for this might be (among others):

« small value of COEFF_dt

« big values of surface tension, also here the time step size might drop considerably.

o KOP using EULER instead of LAGRANGE with non-moving geometries

Note: This feature is especially helpful if LINEQN_solver and/or LINEQN_solver_ScalarSystems is set to 'SAMG'.
As the neighborhood graphs are kept for several time steps, the matrix setup operations do not have to be executed for
these time cycles, and so a lot of computation time can be saved.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
MP_Dropletph I

COMP_DropletphaseSubcycles
switch for DROPLETPHASE subcycling (UCV)

For modeling the dynamics of particle-particle and particle-wall interaction very small timesteps might be necessary. These
timesteps can be orders of magnitude smaller than the maximum timestep for a participating fluid. If the global timestep is
reduced to these small timesteps, then the performance is significantly decreased.

363

In order to keep a good performance, there is the possibility to resolve the dynamics of the DROPLETPHASE in subcycles.

LIQUID global timestep Atglob

e

e - ’
]

g simulation time

I'9a4 SRS |

DROPLETPHASE subcycling timestep Atsyb

The functionality is switched on with parameter COMP_DropletphaseSubcycles.

COMP_DropletphaseSubcycles = 1 # turn on subcycling

This means that at the beginning of the timestep in DROPLETPHASE it is determined how many substeps are likely
needed to fulfill criterions for COEFF_dt d30 and COEFF_dt coll in every substep. This number of substeps will be
performed. If during subcycling it is realized that the substep size was too big, then this will yield a reduction of the global
timestep in the next timestep. The next global timestep (from DROPLETPHASE perspective) is only determined by
COEFF _dt criterion, as it guarantees sufficient quality of neighborhood information for the particles.

There is also the option to introduce a limit for the maximum number of allowed subcycles: if

COMP_DropletphaseSubcycles = -10 # use at maximum 10 subcycles

is specified, the algorithm will strictly obey a maximum of 10 subcycles, irrespective of possible violations of time step
criteria. Other than in the case above, the global timestep will then also be influenced by the specified number and the
criterions given by COEFF_dt d30 and COEFF_dt_coll_UCV.

Default: COMP_DropletphaseSubcycles = 0 (subcycling switched off)

The subcycling only gets activated whenever the global time step &tggob is larger than any of the DROPLETPHASE time
steps dictated by

e DELT dt AddCond
o COEFF_dt d30
o COEFF_dt_coll

In this case, the solver will execute multiple subcycles with a reduced time step that satisfies both of these conditions.

Structure of subcycling

At the beginning of a global time step the following is done first:
« Reading of PhysicalProperties
« Computation of layer thickness and curvature (see LiquidLayer)

Then, in each subcycle the following steps are executed:

« Treatment of boundary conditions (in particular wall collisions for %BND_COLLISION%)

Update body forces defined via gravity , FreeFlight

Resolve Particle-Particle collisions as defined via Particlelnteraction , see DropletCollisions

Calculation of the new particle velocities

- Movement the particles (second order displacement)

For particles near boundary update the distance to boundary virtually by considering the calculated displacement
normal to the boundary element.

Currently not included in the subcycling:
« LiquidLayer : modeling of liquid layers as a 2D shallow water phase

Important remarks
364

Due to the structure of the subcycling procedure the following points should be kept in mind

« Specifying a value not equal 0 here yields that the particle displacement must be done within the DROPLETPHASE

-Routine instead of the central displacement-Routine.

« The value supplied via DarcyBasisVelocity will be read before the subcycling and stored in %ind_v0Darcy%. When
considering a drag force acting on the droplets (cf. FreeFlight) projecting the LIQUID velocity in every subcycle is
often unnecessary. In these cases it is better to store the projected velocity in %ind_v0ODarcy% and use this index in

the drag equation supplied via gravity .

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COMP_ DropletphaseWithDisturbance

COMP_DropletphaseWithDisturbance
disturbance for DROPLETPHASE (UCV)

COMP_DropletphaseWithDisturbance = 1

Default: COMP_DropletphaseWithDisturbance = 0

By default the update of the positions of DROPLETPHASE points is:

n—41
i

1
Xdefault = Xj | =Xj + At; -V

x?“ is the current and x}' is the previous position.
At; is the current time step size and v;‘“ is the current velocity.

If the disturbance is switched on by COMP_DropletphaseWithDisturbance = 1, the default update is disturbed

by the following procedure.
1.) Rotate the default update position Xderauir, by a small, smoothing length dependent

angle (based on a random number) with respect to a random, normalized axis through the previous position:

o random number 1 determines the sign (-1, 0, 1) of angle e (rotation only for non-zero sign)

Pl_
o random vector d determines the rotation axis as a = ”;; ;1”
i 2
o rotation of default update position
n+1 .
X = (a ' Xdel"ault)a + [?DS(Q')(E‘- x xde[‘ault) X a -+ Sln(ﬂ’) (a : xdel"ault)

2.) Adapt the current velocity.

Note: This procedure guarantees that the distance between previous and current position
is not changed compared to the default behavior.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COMP_RemeshBoundary

COMP_RemeshBoundary
parameter to control remeshing of IGES-files (UCV)

COMP_RemeshBoundary = 1
Default: COMP_RemeshBoundary = -1

The boundary is remeshed if COMP_RemeshBoundary=>0.

by

That makes sense only if an IGES-file is used. In this case, the triangle size is taken by COMP_RemeshBoundary

*SmoothingLength.

365

The result of the meshing operation is written in the file .FPMproject_CompleteGeometry.FDNEUT.
In order to visualize, a .case-file is written in SAVE_path .

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COMP_TypeSmooth_Eta

COMP_TypeSmooth_Eta
type for smoothing of viscosity (UCV)

COMP_TypeSmooth_Eta =0
Default: COMP_TypeSmooth_Eta = 1 (logarithm -- smoothing -- exponent)

Direct smoothing is achieved by COMP_TypeSmooth_Eta = 0.

MESHFREE - InputFiles - USER_common_variables - __ Parameters -

COMP_TypeSmooth_Rho

COMP_TypeSmooth_Rho
type for smoothing of density (UCV)

COMP_TypeSmooth_Rho = 1
Default: COMP_TypeSmooth_Rho = 0 (logarithm -- smoothing -- exponent)

Direct smoothing is achieved by COMP_TypeSmooth_Rho = 0.

MESHFREE - InputFiles - USER _common_variables - _ Parameters - COMP_dt_indep

COMP_dt_indep

parameter to switch on independent time stepping for two-phase LIQUID simulations with v-- and vp- (UCV)

Set

COMP_dt_indep = 1

or any other integer value >0 to switch on the independent time stepping for two-phase LIQUID simulations with v-- and vp-
. Furthermore, the write-out of the .dtindep file into the same folder as the default timestep file (see TimestepFile) is

enabled.

Default: COMP_dt_indep =0

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
COMP_facSmooth_Eta

COMP_facSmooth_Eta
parameter for weight kernel definition for smoothing of viscosity (UCV)

COMP_facSmooth Eta =6.0

Default: COMP_facSmooth Eta = 3.0

366

. () — ®i)?
W =exp | —c ol T
iy exp (4 %(h? T hf)

The value of COMP_facSmooth_Eta defines ¢ in the equation above.

The bigger the value of COMP_facSmooth_Eta , the more narrow the kernel and the less points in neighborhood are
considered for smoothing.

MESHFREE - InputFiles - USER _common_variables - _ Parameters - COMP_nbSmooth Eta

COMP_nbSmooth_Eta

number of smoothing cycles for effective and total viscosity (UCV)

COMP_nbSmooth Eta =5
Default: COMP_nbSmooth Eta =2
We smooth the values of %ind ETA sm% and %ind _ETA_ eff% .

If ﬁf is the smoothed version, the total viscosity after the k-th smoothing cycle at

the MESHFREE point with index i, then the new value at cycle (k+1) is given by
N
Wi - 1j

skl _ 3=1

T N
> Wiy
j=1

i.e. a Shepard-based smoothing.
The weight kernel W;; is defined by COMP_facSmooth_Eta .

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
CONTROL _StopAfterReadingGeometry

CONTROL_StopAfterReadingGeometry
stops the MESHFREE program after geometry is read (UCV)

CONTROL_StopAfterReadingGeometry = 1

Default: CONTROL_StopAfterReadingGeometry = 0 (no geometry checking)

option effect

MESHFREE reads the geometry, writes a result file and then the computation stops. Some simple checks

! concerning the geometry can be done without waiting for the whole point cloud generation.

MESHFREE reads the geometry, and then goes into the time integration without creating the MESHFREE
pointcloud. l.e. the geometry is moving due to the MOVE statements given in USER_common_variables.dat.

2 Results are written due to the SAVE_first and SAVE_interval statements, enabling the user to veryfy the MOVE
commands.
3 same as 2. Additionally, in each time cycle we compute to search tree for the geometry (boundary elements),

thus, we can check the performance of the organization steps or check rigid body movement with collisions.

Note: The parameter RepairGeometry is ignored, if CONTROL_StopAfterReadingGeometry > 0.
367

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
DIFFOP_ConsistentGradient

DIFFOP_ConsistentGradient
consistent gradient in the sense d/dn = n*grad (UCV)

DIFFOP_ConsistentGradient = 1
Default: DIFFOP_ConsistentGradient = 0

Adapt the normal direction of the gradient operator such that n*grad = d/dn, where d/dn is the Neumann (i.e. very stable)
operator.

MESHFREE - InputFiles - USER_common_variables - __ Parameters -
DIFFOP_Neumann_ExcludeBND

DIFFOP_Neumann_ExcludeBND

(chamberwise) parameter to exclude boundary points from the neighborhood for the computation of the Neumann
operators (UCV)

DIFFOP_Neumann_ExcludeBND = 90.0

Default: DIFFOP_Neumann_ExcludeBND = -1.0 (do not exclude any boundary point from the neighborhood)
In order to exclude all neighbor boundary points from the stencil, set

DIFFOP_Neumann_ExcludeBND = 360

A boundary point j is excluded from the Neumann stencil computation of point i, if the angle between the two boundary
normals fulfills

(niQﬂj) <
where alpha is the value of DIFFOP_Neumann_ExcludeBND , to be given in degrees.

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
DIFFOP_WeightReductionInCaseOfDeactivation

DIFFOP_WeightReductioninCaseOfDeactivation
(chamberwise) parameter to reduce the weight of a neighbor point in case of deactivation (UCV)

DIFFOP_WeightReductionlnCaseOfDeactivation = 0.0

Default: DIFFOP_WeightReductionInCaseOfDeactivation = 0.0001 (keep a small value in order to not run into numerical
singularity of the leaset-squares-systems if all neighbors are deactivated hazardously)

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
DIFFOP_kernel_Gradient

368

DIFFOP_kernel_Gradient
(chamberwise) factor for the weight kernel for the least squares approximation stencils for gradients (UCV)

The differential operators are introduced in DOCUMATH_ DifferentialOperators.pdf .
Especially, see section 1 of this document, where the weight kernels are introduced. In principle, the weight kernel has the
form

, I — x|
Wi(x;,x) = exp (_QI;TJ')?

With DIFFOP_kernel_Gradient , we define the parameter a¢ for the weight kernel used for the gradient approximation
stencils.
Big values make the kernel narrow, small values make it broad.

DIFFOP_kernel_Gradient = 6

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
DIFFOP_kernel_Laplace

DIFFOP_kernel_Laplace
(chamberwise) factor for the weight kernel for the least squares approximation stencils for the Laplacian (UCV)

DIFFOP_kernel_Laplace = 6
Default: DIFFOP_kernel_Laplace = 2
Big values make the kernel narrow, small values make it broad, c.f. DIFFOP_kernel_Gradient .

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
DIFFOP_kernel_Neumann

DIFFOP_kernel_Neumann
(chamberwise) factor for the weight kernel for the least squares approximation stencils for Neumann operators (UCV)

DIFFOP_kernel_Neumann = 5.0
Default: DIFFOP_kernel_Neumann = 2.0

The weight for the computation of the differential Neumann operators is given by

, i — ;]
Wi =exp| —a- 5—5—5-
S (5(h% + h?)

where alpha is equal to the value of DIFFOP_kernel_Neumann .

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
369

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/DifferentialOperators/DOCUMATH_DifferentialOperators.pdf

DIFFOP_kernel_Transport

DIFFOP_kernel_Transport
(chamberwise) factor for the weight kernel for the least squares approximation stencils for the transport operators (UCV)

DIFFOP_kernel_Transport = 6
Default: DIFFOP_kernel_Transport = 2
Big values make the kernel narrow, small values make it broad, c.f. DIFFOP_kernel_Gradient .

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters - DIFFOP_laplace

DIFFOP_laplace
type of least squares approximation stencils for the Laplacian (UCV)

Default: DIFFOP_laplace = DIFFOP_laplace_optimized

MESHFREE - InputFiles - USER_common_variables - __ Parameters -
DP_ nlyR Isiv ntactFor

DP_UseOnlyRepulsiveContactForce
switch regarding attractive forces in spring-damper model (UCV)

DP_UseOnlyRepulsiveContactForce = 0

Default: DP_UseOnlyRepulsiveContactForce = 1

For certain collision models such as the spring-damper model in DROPLETPHASE , the model may formally lead to
attractive forces during the separation phase. By default these attractive forces will be prevented and the contact force set
to zero. Setting the above flag to zero will instead allow attractive forces.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
FLIQUID_ConsistentPressure Version

FLIQUID_ ConsistentPressure_Version
version how to compute the consistent pressure (UCV)

FLIQUID_ConsistentPressure_Version = 2111 # deprecated, see AlternativeDPA
FLIQUID_ConsistentPressure_Version = 1127 # use this instead

Default: FLIQUID_ConsistentPressure_Version = 1111

370

option description

first
digit

second
digit

third
digit

fourth
digit

Version of how to compute the consistent dynamic pressure, cf. DynamicPressureAlgorithm .

Version 1:div((1/rho)*grad_p) = ... see ClassicalDPA
Version 2: sum(W_ij*(p_j-p_i)) = ... see AlternativeDPA

Version 3: experimental, do not use.

41

Version 4: dynamic pressure is not computed (i.e. it remains what is there from the step Piyn = p;"yn +c

with ¢ denoting the correction pressure in the Chorin (v--) or penalty (vp-) formulation
Version how to compute the acceleration.

Version 1: ff_" = (vT . V) . v -> quasistationary approach

Version 2: 4¥ — w -> dynamic approach

Version 3: ff_‘; =v7T. ((v —vo)(v — vn)T) — (v — vg) (VTV) -> local quasistationary approach with

chain rule in order to isolate the div(v)-part. The reference system is travelling with the speed v of the local
MESHFREE point.

Version how to compute PSI, see ComputationOfPSI .

Version 1: div(div(eta*grad(v)))

Version 2: divBAR(div(eta*grad(v)))

Version how to compute PHI.

There are 8 variations, see ComputationOfPHI . This option makes sense only in case of the ClassicalDPA . In

case of AlternativeDPA , keep this value at 1.

Note: The second digit has impact only if

« regularization of the pressure system is requested by RegularizeDPA . Here, it impacts the way the target pressure
gradient is computed.

« version 4 or 8 is used for ComputationOfPHI (fourth digit).

* %BND_none% is used as a boundary condition, as this condition is based on the AlternativeDPA -algorithm, and so

this digit impacts the computation of the target pressure gradient.

We suggest:

FLIQUID_ConsistentPressure_Version = 1227
FLIQUID_ConsistentPressure_CoeffVIM = 0.01

371

useful options characteristics of the numerical results

FLIQUID_ConsistentPressure_Version

_ 1111 (classical approach) 7%BND_none% only valid in quasistationary boundaries

FLIQUID_ConsistentPressure_Version very smooth results, also here %BND_none% only valid in quasistationary
= 1127 (same as 2111) boundaries

FLIQUID_ConsistentPressure_Version %BND_none% valid in any case, as accelerations are computed exactly.
= 1227 However, the results might be noisy.

%BND_none% valid in any case. However, accelerations are computed on a
FLIQUID_ConsistentPressure_Version local quasistationary approach (each point forms an observer coordinate
= 1327 system). These values might be less precise than 1227, the results however are
more smooth.

Numerically most natural, as the acceleration is given by the finite temporal
difference of the previous and current velocities, and PHI is the divergence of
this term. However, it produces more noises in the pressure solution.

FLIQUID_ConsistentPressure_Version
= 1228

Note: The understanding of "quasistationary” is:
« at a fixed location of an observer, the physical quantities only slowly change in time.
« watercrossing with fixed pool and moving car IS NOT quasistationary, because an observer standing in the pool will
notice dramatic changes as the car drives by.
» watercrossing with fixed car and moving pool IS INDEED quasistationary, because the observer in the car will see
slow changes of the water motion as the car constanty drives through the pool.

In case of non-quasistationary flow, set FLIQUID_ConsistentPressure_Version = 1227 or
FLIQUID_ConsistentPressure_Version = 1327.

MESHFREE - InputFiles - USER_common_variables - _ Parameters
FOFTLIQUID_AdditionalCorrectionLoops

FOFTLIQUID_AdditionalCorrectionLoops

additional velocity correction loops (UCV)

FOFTLIQUID_AdditionalCorrectionLoops = 2

Default: FOFTLIQUID_AdditionalCorrectionLoops = 0

MESHFREE - InputFiles - USER_common_variables - _ Parameters - IGES Accuracy

IGES_Accuracy

relative accuracy for consistency checks of IGES-faces (UCV)

IGES_Accuracy = 1.0e-6

Default: IGES_Accuracy = 1.0e-4

MESHFREE - InputFiles - USER_common_variables - _ Parameters
IGES_HealCorruptFaces

IGES_HealCorruptFaces

372

allow a certain depth of healing triangulation of IGES faces by refinement (UCV)

In order to make work the triangularion of IGES faces, consecutively refine the triangulation by this given number of levels.

IGES_HealCorruptFaces = 5

Default: IGES_HealCorruptFaces = 1

option description

0 no local refinement, but reject if triangulation occurs to be corrupt
-1 keep even corrupt triangulation
MESHFREE - InputFiles - USER _common_variables - _ Parameters - LINEQN_scaling

LINEQN_scaling

choose the way how to scale/normalize the linear systems (UCV)

Currently, this parameter is implemented only if LINEQN_solver and/or LINEQN_solver_ScalarSystems is set to 'SAMG'.
LINEQN_scaling = 'NONE'

Default: LINEQN_scaling = 'NORM'

option description

'NORM' Normalize, i.e. multiply the rows of the matrix such that the diagonal element becomes 1.
'PODI' Multiply the row of the matrix with -1 if the original diagonal entry is negative.

'NONE' Do not normalize at all, i.e. keep the matrix in its original state.

'NATV' Try to construct the vp- system in the sense of the saddle point method:

Try to establish (A B\\B' C), where B' is approximately the transpose of B. It would exactly be the transpose,
if B was antisymmetric. B contains the d/dx, d/dy, d/dz operators. In MESHFREE , they are not strictily
antisymmetric.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
LINEQN_solver Scalar m

LINEQN_solver_ScalarSystems
linear solver to be used for the scalar systems like pressure, temperature, etc. (UCV)

LINEQN_solver_ScalarSystems = 'BCG2'

Default: LINEQN_solver_ScalarSystems = 'BCN2'

373

option description

S:SG BiCGstab, using matrix-times-vector emulation for the big system (i.e. do not construct the linear system
'BCGH' explicitly, but provide a subroutine that computes the result of the matrix-vector-operation)

'BCG2' BiCGstab(2), using matrix-times-vector-emulation
'SAMG' SAMG-solver, Fraunhofer SCAI
'BCN1' BiCGstab, no SPAI-preconditioning

'BCN2' BiCGstab(2), no SPAIl-preconditioning, default

Expert option: auto-chooser
'AUTO:xxxx:yyyy:n' -> Automatically choose between 2 solvers xxxx and yyyy from the list above every n time steps.

More information: BiCGstab , BiCGstab(2) , SAMG

MESHFREE - InputFiles - USER_common_variables - _ Parameters - LINEQN_solver

LINEQN_solver
linear solver to be used for the coupled vp- or v-- system (UCV)

LINEQN_solver = 'BCG2'

Default: LINEQN_solver = 'BCX2'

option description

BiCGstab, using matrix-times-vector emulation for the big system (i.e. do not construct the linear system
explicitly, but provide a subroutine that computes the result of the matrix-vector-operation)

'BiCG'
'BCG2' BiCGstab(2), using matrix-times-vector-emulation

'BCX1" BiCGstab, explicitly construct the matrix (takes more memory)

'BCX2' BiCGstab(2), explicitly construct the matrix (faster, but takes more memory), default

'SAMG' Algebraic Multigrid method from the SAMG-solver library, Fraunhofer SCAI

'BCGL" BiCGstab(l), using matrix-times-vector emulation, experimental , see also BCGSL_ell

Expert option: auto-chooser
'AUTO:xxxx:yyyy:n' -> automatically choose between 2 solvers xxxx and yyyy from the list above every n time steps.

More information: BiCGstab , BiCGstab(2) and BiCGstab(l) , SAMG .

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
MEMORIZE_ResetReadFlag

MEMORIZE_ResetReadFlag
reset frequency for MEMORIZE_Read flag (UCV)

374

https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method#Generalization
http://www.scai.fraunhofer.de/samg
https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method
https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method#Generalization
http://www.scai.fraunhofer.de/samg

MEMORIZE_ResetReadFlag = 3
Default: MEMORIZE_ResetReadFlag = 10

If points are read in by MEMORIZE_Read statements, the corresponding flag is reset after the given number of time steps.
Interior points with flag larger than zero are excluded from the free surface check.

MESHFREE - InputFiles - USER _common variables - _ Parameters - PHASE distinction

PHASE_distinction

invoke detection of interface connections (UCV)

PHASE_distinction = "YES'

Default: PHASE_distinction = 'NON'

Setting this parameter to "YES', invokes detection of interphase connections. Each boundary point (also free surface point)
searches for another boundary point

of a different chamber, which is close enough and with which it can exchange interphase boundary conditions, see
BCON_CNTCT .

If a contact point is found, the index of this point is stored in %ind_iopp% .

MESHFREE - InputFiles - USER_common_variables - _ Parameters - PointDsplMethod

PointDsplMethod

(experimental) Choice among different ways to move points in Lagrangian framework (UCV)

PointDspIMethod = 4

Default: PointDsplMethod = 0

option description

0 Default -> same as 2

1 First order, velocity assumed constant between time levels

2 Second order, velocity derivative assumed constant between time levels

3 Moves points along the streamlines at that time level

4 Moves points by considering the change of streamlines from the previous time level to this one
5 Substepping method (** WILL NOT WORK WITH MPI for more than one process **)

MESHFREE - InputFiles - USER _common_variables - _ Parameters - RepairGeometry

RepairGeometry
enforce clustering of geometry nodes upon read-in (UCV)

375

RepairGeometry = 0.001
Default: RepairGeometry = -1.0

If the triangulation and the corresponding node points of two surfaces sharing a common edge do not conform, unphysical
effects may occur at the edge in case of points slipping from one surface to the other or tearing off at the edge.
RepairGeometry > 0 enforces clustering of the geometry node points relative to the defined smoothing length upon read-in.

Note:
« The use of this parameter alters the geometry, use with caution
and consider remeshing the geometry wrt conformity of the node points.
« RepairGeometry is ignored, if CONTROL_StopAfterReadingGeometry > 0.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
RepresentativeMass_iData

RepresentativeMass_iData
(chamberwise) parameter for the RepresentativeMass algorithm (UCV)

RepresentativeMass_iData = (iTrigger, newPoints, inactiveOrDeletedPoints, nbSmootingLoops,
correctionFactorPerSmoothingLoop, ...

iMethodSmooth, whichVi, iMethodRepDens, startAtTimeCycle, ...

Wrfactor, VWexponent, Kfactor, KWexponent, Mexponent , ...

deletion_weightInflowQOutflow, deletion_weightOtherBND , ...

$egnForFitering$)

Default: off
RepresentativeMass_iData=(0, 1,1, 1,10,1,1,1,2,2,0, 2,0, 1, 1000, 100, 0)

RepresentativeMass_iData = 1 is equivalent to
RepresentativeMass_iData=(1,1,1,1,10,1,1,1,2,2,0, 2,0, 1, 1000, 100, 0)

and switches the algorithm on without changing the default values of the other parameters.

RepresentativeMass_iData switches on the distribution of the representative masses within the points in the fluid domain.
The strength of the correction itself is controlled by the two parameters VOLUME_correction_FreeSurface or
VOLUME_correction_local. One or both of these parameters must additionally be set in order to activate the Volume
Correction algorithm.

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

entry description

iTrigger global switch for representative mass algorithm

off: 0 (default), on: 1, see RepresentativeMassAlgorithm

number of loops to provide representative mass packages from existing points

newPoints :
to new points
Default: 1
inactiveOrDeletedPoints for development/debugging, KEEP AT 1

376

nbSmootingLoops

correctionFactorPerSmoothingLoop

iMethodSmooth

whichVi

iMethodRepDens

startAtTimeCycle

Wiactor

VWexponent

Kfactor

KWexponent

Mexponent

deletion_weightinflowOutflow

deletion_weightOtherBND

$eqnForFitering$

number of iteration loops per time cycle of the Smoothing algorithm

multiply the mass change in Smoothing by a reducing factor (in percent!!!)

Ar?ai =q (Z Ar?a,ij - Ar?a,ﬁ)
J

method for Smoothing algorithm
choose 1, 2, or 3.

Recent true applications show, that most efficient smoothing is achieved with
method 3. The other methods might provoke strange behavior.

for development/debugging, KEEP AT 1

method how to compute the representative density, see
DefinitionRepresentativeDensity

start the representative mass analysis at this time cycle
value of ayy , see DefinitionRepresentativeDensity
value of 3y~ , see DefinitionRepresentativeDensity
value of g, see Smoothing

value of 3 , see Smoothing

for development/debugging, KEEP AT 1

redistribution of repMass of deleted/deactivated points: additional weight factor
for inflow and outflow points (in percent!!!)

redistribution of repMass of deleted/deactivated points: additional weight factor
for other boundary points except inflow and outflow (in percent!!!)

equation number for the filter that defines, what points are allowed to carry a
representative mass.

Default: 0, other values have to be implemented in USER_common_variables

Example: implementation of a filter in USER_common_variables

begin_equation{ $myFilter$ } #if the functional is positive, the point is allowed to carry representative mass
if (Y%ind_kob%=%BND_slip%) :: -1 # points on %BND_slip% will not carry RepMass
else :: 1 # all other points regularly carry RepMass

endif
end_equation

RepresentativeMass_iData = (..., $myFilter$) # put the filter equation at the 17th position

Note

« The algorithm is described in RepresentativeMassAlgorithm .
« Using this volume correction will overwrite any setting for the global volume correction by VOLUME_ correction .

377

MESHFREE - InputFiles - USER _common_variables - _ Parameters - SAMG_Setupreuse

SAMG_Setupreuse
accelerates SAMG solver for quasi-stationary point clouds (UCV)

SAMG_Setupreuse = 1
Default: SAMG_Setupreuse = 0 (no reuse)
This feature accelerates the SAMG solver by skipping its setup phase and reusing the last known setup of SAMG, i.e. the

neighbor correlations of the point cloud at the time of the last computed setup are used to solve the current linear systems.
Therefore, the use of COMP_DoOrganizeOnlyAfterHowManyCycles is highly advised when this option is exploited.

options description

0 no reuse
1 reuse setup for pressure systems
2 reuse setup for velocity systems
3 reuse setup for pressure and velocity systems
MESHFREE - InputFiles - USER_common_variables - _ Parameters

SAVE_PrecisionTimestepFile

SAVE_PrecisionTimestepFile
choose the precision (number of digits) for values in the timestep file (UCV)

This parameter controls the precision in TimestepFile .
SAVE_PrecisionTimestepFile = 8 # leads to output of the form 0.12345678E+01.

Default: SAVE_PrecisionTimestepFile = 5 (0.12345E+01)

MESHFREE - InputFiles - USER_common_variables - _ Parameters
SAVE_atEndOfTimestep

SAVE_atEndOfTimestep

choose to save data for visualization at the end of time steps instead of at the start (UCV)

SAVE_atEndOfTimestep = 1
Default: SAVE_atEndOfTimestep = 0 (data is saved at the start of the time step)

Note: Any non-zero value will be treated as 1.

MESHFREE - InputFiles - USER_common_variables - _ Parameters
SCAN_ClustersOfConnectivity

SCAN_ClustersOfConnectivity
(chamberwise) switch on cluster checking of MESHFREE point cloud by neighborhood connectivity (UCV)

378

SCAN_ClustersOfConnectivity = (10, 100)
Default: SCAN_ClustersOfConnectivity = (0, 100)
If switched on, MESHFREE determines each separate cluster of the point cloud and gives it a unique index. Clusters are

formed by the neighborhood connectivities up to the given relative distance. The cluster index for each point is stored in
%ind_cluster% .

entry description

first If >0, it switches on the clustering of the point cloud. For values larger than 1, this denotes the minimum
value number of connected points required, to be considered its own cluster.

If <0, it switches on the clustering of the point cloud only for postprocessing (saving of the results). For
absolute values larger than 1, this denotes the minimum number of connected points required, to be
considered its own cluster.

The relative distance in percent of the local SMOOTH_LENGTH , for which two points are considered to be
connected in the same cluster. Hence, 40 means points will be connected in the same cluster, if their distance
is less than 0.4*H

second
value

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
STRESSTENSOR_Variante_Factor

STRESSTENSOR_Variante_Factor
factor in stress tensor time integration wrt the shear modulus (UCV)

STRESSTENSOR_Variante Factor = 50.0

Default: STRESSTENSOR_Variante Factor = 0.0

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
STRESSTENSOR_Variante

STRESSTENSOR_Variante

version of stress tensor time integration (UCV)

STRESSTENSOR_Variante = 7

Default: STRESSTENSOR_Variante = 3

MESHFREE - InputFiles - USER_common_variables - _ Parameters - V00_SmoothDivV

V00 SmoothDivV

Chorin projection: smooth the local values of div(v) before going into the correction pressure computation (UCV)

V00_SmoothDivV = 133

379

Default: VOO_SmoothDivV = 000

entry description

first digit switch for projection of div(v)-values from boundary to interior
0: no projection

>0: projection, where the given value is the factor for the weight kernel that defines the distribution
function

second

digit number of smoothing cycles

third digit factor for the smoothing weight kernel

div(v)smoeth — erp(—SmoothDivV - i) - div(v);
i i

k)

Then, the Chorin correction pressure is established based on the PDE
JAN
d‘it’('{})?mOOLh = VT (—i irt V(;)
Ie]

Note:
« This parameter is used to study conservation properties of MESHFREE .
« Surprisingly, it has bad effects on the smoothness of the velocity and pressure solutions. We observed transversal
ripples for instance for the flow around and airfoil.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
VOLUME_ correction_FreeSurface

VOLUME_correction_FreeSurface
(chamberwise) parameter to correct volume by tiny global lifting of the free surface (UCV)

VOLUME_correction_FreeSurface = 0.001 # the volume must not be changed by more than 0.001*TotalVolume in a
single time step.

Default: VOLUME_correction_FreeSurface = 0.0 (off)
The given value is the maximum allowed corrected volume per time step, based on the total volume of a chamber.

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER). If it
is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.
If the volume correction for multiple chambers shall be different, use

VOLUME_ correction_FreeSurface = 0.001
VOLUME_correction_FreeSurface (3) = 0.01
VOLUME_correction_FreeSurface (5) = 0.0

which sets the correction for all chambers first to 0.001, then it changes the values for chambers 3 and 5.

In general, for this type of volume correction, we first compute the potential displacement (distance Dpq¢) of the free
surface by

Dy = min (af;

I’q,arg;e1, — Veurrent) Veurrent

I"'::urr.d-,m Aﬁeef-}url"ace

and then move, in every time cycle, the free surface artificially by the distance
380

D nove = min (DD]_ : H, Dpot)
Here, v is equal to VOLUME_ correction_FreeSurface.

If the RepresentativeMassAlgorithm is activated, the computation of the target volume is straight forward

N -~
m;

I/q,arg;.ﬂj, - -
-1 P

If, moreover, the clustering of the point cloud is activated (see SCAN_ClustersOfConnectivity), the target volume and also
the free surface corrections are computed clusterwise, i.e.

Ik(:] uster o Tﬂ-,i
ﬂarget -

‘E..,?:Eﬂ[k![:]““t'“r) p?‘

pot Vk(:]uﬂt.(:r ! Ak(:]uﬂt(:r

k(:]ugt(:r k(:]ugmr k(:]lmt.[:r
Jocluster =min | o ﬂarget - T"i:urrent v::urrent
current FreeSurface

j|c[:]u.-n.(:r

In this case, the potential movement is displayed in the variable %ind_BNDfree_defect% , representing Epm_.

i

See VolumeCorrection for more information on volume correction.

MESHFREE - InputFiles - USER _common_variables - _ Parameters - VOLUME_correction

VOLUME_correction
(chamberwise) parameter to correct volume by GLOBALLY adjusting the divergence of velocity term (UCV)

VOLUME__correction = 0.001 # the volume must not be changed by more than 0.001*TotalVolume in a single time step

Default: VOLUME_correction = 0.0 (off)

The given value is the maximum allowed corrected volume per time step, relative to the total volume of a chamber.
MESHFREE will adjust div(v) in order to artificially provoke expanding or compressing flow to regain the correct, analytical
volume.

Note:
« This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER). If it
is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.
If the volume correction for multiple chambers shall be different, use

VOLUME_correction = 0.001
VOLUME_correction (3) = 0.01
VOLUME_correction (5) = 0.0

which sets the correction for all chambers first to 0.001, then it changes the values for chambers 3 and 5.

« The global volume correction will be turned off if the RepresentativeMass algorithm is turned on by
RepresentativeMass_iData .

« See VolumeCorrection for more information on volume correction.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
VOLUME_ correction_local

VOLUME_correction_local

(chamberwise) parameter to correct volume by LOCALLY adjusting the divergence of velocity term due to representative
mass balance (UCV)

381

VOLUME_ correction_local = 0.001
Default: VOLUME_correction_local = 0.0 (off)
This correction has an effect only if the representative mass algorithm is switched on, see RepresentativeMass_iData .

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

The idea of the correction is to impose additional divergence of velocity:
div_v_correction = min((Y %ind_r_rep% -Y %ind_r%)/Y %ind_r% , VOLUME_correction_local) / Y %ind_dt%

See VolumeCorrection for more information on volume correction.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -
VPO_VelocityCorrection

VPO_VelocityCorrection
(chamberwise) switch to compute free surfaces (UCV)

VPO_VelocityCorrection = 1

Default: VPO_VelocityCorrection = 0

n+1l dtif
P

vﬂ,—i—l — 'f}

Ve

By default, this correction (Chorin-correction) is switched off for the "vp-"-option, as we assume the velocity to be
sufficiently close to its appropriate value of div(v). However, theoretically it is not wrong to perform the correction, see
equation (24) in Meshfree_Methods_Proceeding_Paper_Jefferies_Kuhnert_17042014.pdf or equation (2.6) in
DOCUMATH_ScalingOfLinearSystem_MxV.pdf .

There is one risk: if the correction pressure (%ind_c%) is corrupt, that will then also mess up the velocity.

MESHFREE - InputFiles - USER_common_variables - _ Parameters - compute FS

compute_ FS
(chamberwise) switch to compute free surfaces (UCV)

Decide whether or not to check for free surfaces.

compute_FS ='NON' # do NOT check for free surfaces (default)
compute_FS ="'YES' # DO check for free surfaces

This parameter can also be set per chamber (see also KindOfProblem , CHAMBER)

compute_FS(1) ='NON' # do NOT check for free surfaces, e.g. for air
compute_FS(2) ="'YES' # DO check for free surfaces, e.g. for water

Note: The same parameter can also be set in common_variables . Definitions in USER_common_variables are dominant.

Default: compute_FS = 'NON'

382

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/Meshfree_Methods_Proceeding_Paper_Jefferies_Kuhnert_17042014.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_ScalingOfLinearSystem_MxV.pdf

MESHFREE - InputFiles - USER_common_variables - _ Parameters -

compute phase_boundary

compute_phase_boundary
(obsolete) invoke detection of interface connections (UCV)

Obsolete, use PHASE distinction instead.

MESHFREE - InputFiles - USER_common_variables - _ Parameters -

damping_p_corr

damping_p_corr

(chamberwise) parameter to reduce the dynamic pressure as initial guess for the next time level (UCV)

damping_p_corr = 0.95

Default: damping_p_corr = 0.999

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

See v-- and vp- for details, especially look for ﬁ"’d‘yn .

MESHFREE - InputFiles - USER_common_variables - _ Parameters - eps T
eps_T
precision in the breaking criterion for the linear systems of temperature (UCV)
eps_T = 1.0e-4
Default: eps_T = 1.0e-6
Details can be found in DOCUMATH_BreakingCriterionLinearSystems.pdf .
MESHFREE - InputFiles - USER_common_variables - _ Parameters - eps_p
eps_p
precision in the breaking criterion for the linear systems of pressure (UCV)
eps_p = 1.0e-4
Default: eps_p = 1.0e-6
Details can be found in DOCUMATH_BreakingCriterionLinearSystems.pdf .
MESHFREE - InputFiles - USER_common_variables - __ Parameters - eps_phyd
eps_phyd

precision in the breaking criterion for the linear systems of hydrostatic pressure (UCV)

eps_phyd = 1.0e-4

383

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_BreakingCriterionLinearSystems.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_BreakingCriterionLinearSystems.pdf

Default: eps_phyd = 1.0e-6

Details can be found in DOCUMATH_BreakingCriterionLinearSystems.pdf .

MESHFREE - InputFiles - USER_common_variables - _ Parameters - eps v

eps_v
precision in the breaking criterion for the linear systems of velocity (UCV)

eps_v = 1.0e-3
Default: eps_v = 1.0e-4

Details can be found in DOCUMATH_BreakingCriterionLinearSystems.pdf .

MESHFREE - InputFiles - USER _common_variables - _ Parameters - max_N_stencil

max_N_stencil
maximum number of neighbor points accepted for stencil computation and numerics (UCV)

max_N_stencil = 25
Default: max_N_stencil = 40
This parameter defines the maximum number of accepted neighbor points for the pure numerics (stencil computation,

differential operators). Out of the complete neighbor list, MESHFREE selects the max_N_stencil closest ones. This
number is relevant for ALL points (interior + boundary).

MESHFREE - InputFiles - USER _common_variables - _ Parameters - ord_eval

ord eval
define approximation order for refill points (UCV)

Define the approximation order for the approximation of all necessary values (velocity, temperature, pressure, etc.) of a
newly created point during simulation. The approximation is done by using the MESHFREE least-squares operators. The
order will be reduced or increased automatically if deemed necessary.

ord eval =2

Default: ord_eval =3

MESHFREE - InputFiles - USER_common_variables - _ Parameters - ord_gradient

ord_gradient
(chamberwise) approximation order of the gradient operators (UCV)

Define the approximation order for gradient approximation using the MESHFREE least-squares differential operators. The
order will be reduced or increased automatically if deemed necessary.

The differential operators are introduced in DOCUMATH_DifferentialOperators.pdf , see especially section 2.2 for
statements about the approximation order.

384

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_BreakingCriterionLinearSystems.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/Incompressible/DOCUMATH_BreakingCriterionLinearSystems.pdf
https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/DifferentialOperators/DOCUMATH_DifferentialOperators.pdf

ord_gradient = 2
Default: ord_gradient = 3

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER). If it
is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

Special feature:
ord_gradient = -2

In this case, the gradient operator is not computed directly, but retrieved from the Laplace operator in the following sense:

i = %(3 Az — xy)

(’-% = %(JiAj ' (y_j - :l',"?,)

¢ = %(3 Az — zi)

MESHFREE - InputFiles - USER_common_variables - __Parameters__ - ord_laplace
ord_laplace

define approximation order of the Laplace operators (UCV)

Define the approximation order for Laplace approximation using the MESHFREE least-squares differential operators. The
order will be reduced or increased automatically if deemed necessary.

The differential operators are introduced in DOCUMATH_DifferentialOperators.pdf , see especially section 2.2 for
statements about the approximation order.
ord_laplace = 2

Default: ord_laplace = 3

MESHFREE - InputFiles - USER _common_variables - _ Parameters - radius hole

radius_hole
relative allowed hole size (UCV)

A hole in a MESHFREE point cloud shall not be bigger than radius_hole *SmoothingLength. If a hole is bigger, it will be
filled by a new MESHFREE point.

radius_hole = 0.40

Default: radius_hole = 0.45

MESHFREE - InputFiles - USER_common_variables - _ Parameters - rel dist_bound

rel_dist_bound
relative distance of neighboring points at boundaries for initial filling (UCV)

rel_dist_bound = 0.35
Default: rel _dist bound = 0.38

This parameter is only effective for initial filling of boundary points. Refilling of boundary points during the simulation is
performed depending on radius_hole .

385

https://svn.itwm.fraunhofer.de/svn/MESHFREEdocu/DifferentialOperators/DOCUMATH_DifferentialOperators.pdf

MESHFREE - InputFiles - USER_common_variables - _ Parameters - restarinewBE filling

restartnewBE_filling
(chamberwise) parameter to control filling of new boundary elements upon restart (UCV)

restartnewBE_filling = 'YES'
Default: restartnewBE_filling = '"NON' (off)

Note: This parameter can also be set chamberwise for multiphase simulations (see also KindOfProblem , CHAMBER).
If it is not set for specific chambers, it is automatically set according to the non-chamberwise definition for all chambers.

See also ExchangeBEOnRestart .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements

3.1.36. __overview_of_syntax_elements__

shows all possible syntax in USER_common_variables

On this page, all left hand side keywords are updated, which can be used in USER_common_variables .
By clicking on one of the keywords, a list of links is shown with the locations the given keyword appears in one or the other
way.

As the documentation is dynamically growing, the links to the given keywords will grow appropriately,
which makes the navigation within the documentation more easy.

List of members:

Abaquslnterpolation

absolute_pressure

ActivateChamberAtTime

ACTIVE

AggregationKernel

AllowContactToChambers NOT USED, but planned
append{ append the INTEGRATION data to an existing .timestep-file of the same structure
BC_CNTFORCE

BC_eps

BC k

BC_p

BC_S

BC_SUBSON

BC_SUPERSON

BC_T

386

BC_TearOffCriterion
BC v
BC_WettingAngle
BCON
BCON_CNTCT
BE_MAP
BE_MONITOR_ITEM
begin_alias{
begin_boundary_elements{
begin_CCC_seeds2D
begin_CCC_seeds3D
begin_CCC_seeds6D
begin_construct_atRestart{
begin_construct{
begin_curve{
begin_equation{
begin_loop{
begin_material{
begin_pointcloud{
begin_savef{
begin_selection{
begin_timestepfile{
BEmap_DefaultValue

BreakageKernel

BUBBLE_DoTheManagement

BUBBLE_EnforceAveragePressure

BUBBLE_ forbidden
BUBBLE_pOffset
case_elsef

casef
CCC_clusterAllTriangles

CCC_CuttingDistance

Define mapping from boundary points to BE

beginning alias definition

beginning boundary elements definition

beginning construct variables definition (only) at restart
beginning construct variables definition

beginning curve definition

beginning equation definition

beginning loop definition

(deprecated) beginning material definition

beginning point cloud definition

begin of begin_save{ environment

beginning selection definition

begin of timestep/integration file environment

Default value of BE_MAP (UCVO)

(chamberwise) switch regarding bubble analysis (UCVO)

fix average pressure for all bubbles (UCVO)

define offset pressure for bubble pressure-on-volume analysis (UCVO)

selection element

selection element

387

CCC_maxSegmentLength
CCC_minNewEdgelength
CCC_relativeEdgelength
CODI_A

CODI_c

CODI_D

CODI_eq
CODI_Integration

CODI_min_max

CODI_min_max_RejectLinearSolution

CODI_Q
CODI_rho
CODI_V
CODI_Vimplicit
COEFF_dt
COEFF_dt_caoll
COEFF_dt_d30

COEFF_dt_Darcy

COEFF_dt_free
COEFF_dt_SurfaceTension_A
COEFF_dt_SurfaceTension_B
COEFF_dt_SurfaceTension_C
COEFF_dt_virt

COEFF_mue

CoeffDtVirt

COMP_CosEdgeAngle

COMP_DoOrganizeOnlyAfterHowMa

nyCycles

COMP_DropletphaseSubcycles

COMP_DropletphaseWithDisturbance

COMP_dt_indep

factor for computation of time step size (UCVO)
time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCVO)
time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCVO)

define the virtual time step size for applications with Darcy (Brinkman) term
(UCVO)

(experimental) factor for exaggerated movement of the free surface (UCVO)
time step criterion for surface tension, parameter A (UCVO)

time step criterion for surface tension, parameter B (UCVO)

(experimental) time step criterion for surface tension, parameter C (UCVO)
(chamberwise) scaling factor for the virtual time step size (UCVO)

scaling factor for numerical viscosity (UCVO)

(chamberwise) parameter to identify edges in geometry (UCVO)

do the point cloud organization only after how many time cycles (UCVO)

switch for subcycling in DROPLETPHASE (UCVO)
disturbance for DROPLETPHASE (UCVO)

parameter to switch on independent time stepping for two-phase LIQUID
simulations with v-- and vp- (UCVO)

388

COMP_facSmooth_Eta
COMP_nbSmooth_Eta
COMP_RemeshBoundary
COMP_TypeSmooth_Eta
COMP_TypeSmooth_Rho
COMP_ViscosityCompensation
compute_FS
compute_phase_boundary
ConsistencyChecksAtStartup
ContinuousPhase

CONTROL_StopAfterReadingGeomet
ry

COORDTRANS
CouplingBFT_DataRequest
CouplingBFT_Synchronization

CouplingBFT_TypeOfOfOtherSimulati
on

CouplingBFT_WorkingDirectoryOfOth
erSimulation

cv

damping_p_corr

DarcyBasisVelocity
DarcyConstant
DaughterParticleDistribution
DaughterParticleProbability
DELT_dt
DELT_dt_AddCond
DELT_dt_start
DELT_dt_variable

density

DiffLaw

DIFFOP_ConsistentGradient

parameter for weight kernel definition for smoothing of viscosity (UCVO)
number of smoothing cycles for effective and total viscosity (UCVO)
parameter to control remeshing of IGES-files (UCVO)

type for smoothing of viscosity (UCVO)

type for smoothing of density (UCVO)

(chamberwise) switch to compute free surfaces (UCVO)

(obsolete) invoke detection of interface connections (UCVO)

stops the MESHFREE program after geometry is read (UCVO)

give the type of the other simulation

working directory of another simulation to which couling has to be performed

(chamberwise) parameter to reduce the dynamic pressure as initial guess for the
next time level (UCVO)

Define velocity of porous material

Define coupling parameter for porous material

maximum allowed time step size
defines a custom time step criterion
time step size at the start of a simulation

let MESHFREE control the time step size

consistent gradient in the sense d/dn = n*grad (UCVO)

389

DIFFOP_kernel_Gradient

DIFFOP_kernel_Laplace

DIFFOP_kernel_Neumann

DIFFOP_kernel_Transport

DIFFOP_laplace

DIFFOP_Neumann_ExcludeBND

DIFFOP_WeightReductionInCaseOfD
eactivation

divergenceV

DovmmuUntilTime_DovpmFromTime

DovpmFromTime

DP_UseOnlyRepulsiveContactForce
DropletSource

end_alias
end_boundary_elements
end_construct
end_construct_atRestart
end_curve

end_equation

end_loop

end_material
end_pointcloud
end_save

end_selection
end_timestepfile
ENFORCE_min_max

ENFORCE_min_max_RejectLinearSo
lution

eps_p

(chamberwise) factor for the weight kernel for the least squares approximation
stencils for gradients (UCVO)

(chamberwise) factor for the weight kernel for the least squares approximation
stencils for the Laplacian (UCVO)

(chamberwise) factor for the weight kernel for the least squares approximation
stencils for Neumann operators (UCVO)

(chamberwise) factor for the weight kernel for the least squares approximation
stencils for the transport operators (UCVO)

type of least squares approximation stencils for the Laplacian (UCVO)

(chamberwise) parameter to exclude boundary points from the neighborhood for
the computation of the Neumann operators (UCVO)

(chamberwise) parameter to reduce the weight of a neighbor point in case of
deactivation (UCVO)

parameter to control the execution of v-- and vp- solvers in two-phase LIQUID
simulations wrt time

parameter to control the execution of the vp- solver in two-phase LIQUID
simulations wrt time

switch regarding attractive forces in spring-damper model (UCVO)

ending alias definition

ending boundary elements definition
ending construct variables definition
ending construct variables definition (only) at restart
ending curve definition

ending equation definition

ending loop definition

(deprecated) ending material definition
ending point cloud definition

end of begin_save{ environment
ending selection definition

end of timestep/integration file environment

precision in the breaking criterion for the linear systems of pressure (UCVO)

eps_phyd

eps_T

eps_v

eta

EVENT
EventMessage

FLIQUID_ConsistentPressure_Versio
n

FOFTLIQUID_AdditionalCorrectionLo
ops

ForbidContactToChambers
ForchheimerConstant
GenerateBubbleAtInflow
gravity

HEAT_EQ_1D

HEAT_EQ_1D_TRANSFER_COEFF
_EXTERNAL

HEAT_EQ_1D_TRANSFER_COEFF
_INTERNAL

heatsource
IGES_Accuracy
IGES_HealCorruptFaces
include_CCC_curves
include_CCC_seeds2D
include_CCC_seeds3D
include_CCC_seeds6D
include_Ucv{
INITDATA
INTEGRATION
KindOfProblem

KOP

lambda

latentheat

precision in the breaking criterion for the linear systems of hydrostatic pressure
(UCVO)

precision in the breaking criterion for the linear systems of temperature (UCVO)

precision in the breaking criterion for the linear systems of velocity (UCVO)

version how to compute the consistent pressure (UCVO)

additional velocity correction loops (UCVO)

NOT USED, but planned

Define coupling parameter for porous material

relative accuracy for consistency checks of IGES-faces (UCVO)

allow a certain depth of healing triangulation of IGES faces by refinement (UCVO)

include a file in UCV-format

Model and Solver selection

Model and Solver selection

391

LINEQN_scaling choose the way how to scale/normalize the linear systems (UCVO)

LINEQN_solver linear solver to be used for the coupled vp- or v-- system (UCVO)

LINEQN_solver_ScalarSystems linear solver to be used for the scalar systems like pressure, temperature, etc.
(UCVO)

max_N_stencil maximum number of neighbor points accepted for stencil computation and

numericss (UCVO)
max_vl
MeanNumberDaughterDroplets
MEMORIZE_Read
MEMORIZE_ResetReadFlag reset frequency for MEMORIZE_Read flag (UCVO)
MEMORIZE_Write
min_vl
MONITORPOINTS_CREATION

MONITORPOINTS_CREATION_Func
tionEvaluation

MONITORPOINTS_DELETION
MONITORPOINTS_STOP
MOVE

mue

NumberOfDaughterParticles

ODE

ord_eval define approximation order for refill points (UCVO)

ord_gradient (chamberwise) approximation order of the gradient operators (UCVO)

ord_laplace define approximation order of the Laplace operators (UCVO)

parameters{ give arguments/parameters to a include file (like calling subroutines or functions)

ParticleInteraction defines the particle interaction model (attraction and repulsion) in a particle phase
(DROPLETPHASE only)

ParticlePhase

PBE_Developement
PBE_Model_Alpha_Max
PBE_Model_Alpha_Min
PBE_Model_ContinuousDragSwitch

PBE_Model_DiffusionSwitch

392

PBE_Model_E_DropletSource
PBE_Model_K_DropletSource

PBE_Model_KEPS_DropletVisibilityS
witch

PBE_Model_Vmax
PBE_Model_Vmin
PBE_SolverSetup
PHASE_ distinction
PointCloudReduction

PointDsplMethod

POSTBND
POSTVOL
radius_hole
Rconst
rel_dist_bound
RelaxationTime

RemeshBoundary_OrientationBuiltin
Components

RemeshBoundary_RemoveTinyClust
ers

RepairGeometry
RepeatCurrentTimeStep

RepeatCurrentTimeStep_AdditionalC
omputationsAfterDataTransfer

RepeatCurrentTimeStep_ChangeCVc
onfiguration

RepeatCurrentTimeStep_InitializeVari
ables

RepeatCurrentTimeStep_SaveVariabl
es

RepresentativeMass_iData
Restart
restart_additionalBE

restart_copying

invoke detection of interface connections (UCVO)

(experimental) Choice among different ways to move points in Lagrangian
framework (UCVO)

relative allowed hole size (UCVO)

relative distance of neighboring points at boundaries (UCVO)

enforce clustering of geometry nodes upon read-in (UCVO)

(chamberwise) parameter for the RepresentativeMass algorithm (UCVO)
launch MESHFREE on the basis of a restart file
include additional boundary elements file during restart

copy alias definition for additional boundary elements during restart

393

restart_file
restart_path
restart_step_size
restart_toberemoved

restartnewBE_filling

RestartStepSize

RIGIDBODY_ExternalForces

RIGIDBODY _interaction

RIGIDBODY _pressureToApplyOnBod
y

SAMG_Setupreuse
SAVE_ABAQUS

SAVE_atEndOfTimestep

SAVE_BE_ITEM
SAVE_BE_MONITOR_ITEM
SAVE_BE_NODE_ITEM
SAVE_choose_meth
SAVE_CoordinateSystem
SAVE _file

SAVE _filter

SAVE _first

SAVE_format
SAVE_format_skip

SAVE interval

SAVE intervall
SAVE_ITEM
SAVE_list_of_var
SAVE_MONITOR_ITEM
SAVE_path

SAVE_PID_ITEM

Define file name of restart files

Define path to restart files

define after how many time cycles a restart file has to be generated
remove pre-restart boundary elements during restart

(chamberwise) parameter to control filling of new boundary elements upon restart
(UCVO)

define after how many time cycles a restart file has to be generated

pressure to apply on rigid bodies; if not given, hydrostatic and dynamic pressure
are applied

pressure to apply on rigid bodies; if not given, hydrostatic and dynamic pressure
are applied

accelerates SAMG solver for quasi-stationary point clouds (UCVO)

choose to save data for visualization at the end of time steps instead of at the start
(UCVO)

save computational results in different formats

saving relative to specified coordinate system (movement)
file name for the results

filter MESHFREE points to be saved in the result files
control first save

format to save simulation data

skipping cycle for SAVE_format

control saving frequency

control saving frequency

absolute or relative path for the simulation results

394

SAVE_PrecisionTimestepFile choose the precision (number of digits) for values in the timestep file (UCVO)
SAVE_QUALITYCHECK_ITEM
SAVE_ShareScalars

SCAN_ClustersOfConnectivity (chamberwise) switch on cluster checking of MESHFREE point cloud by
neighborhood connectivity (UCVO)

shearmodulus

sigma

SMOOTH_LENGTH

specificheat

STRESSTENSOR_Variante version of stress tensor time integration (UCVO)
STRESSTENSOR_Variante_Factor factor in stress tensor time integration wrt the shear modulus (UCVO)
surfacetension

tau

TaylorQuinneyCoefficient

Tend maximum final time of simulation

thermalconduction

Timelntegration_N_final maximum number of timesteps

TOUCH

Tstart initial time of simulation

USER_h_funct choose either constant, locally variable, or adaptive smoothing length
USER_h_max maximum allowed smoothing length

USER_h_min minimum allowed smoothing length

V00_SmoothDivV Chorin projection: smooth the local values of div(v) before going into the correction

pressure computation (UCVO)

v_transport

viscosity

VOLUME_correction (chamberwise) parameter to correct volume by GLOBALLY adjusting the
divergence of velocity term (UCVO)

VOLUME_ correction_FreeSurface (chamberwise) parameter to correct volume by tiny global lifting of the free surface
(UCVO)

VOLUME__correction_local (chamberwise) parameter to correct volume by LOCALLY adjusting the divergence
of velocity term due to representative mass balance (UCVO)

VPO_VelocityCorrection (chamberwise) switch to compute free surfaces (UCVO)

x_p1

395

X_p

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
BE_MAP

BE_MAP

Define mapping from boundary points to BE

See BE_MAP

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
BEmap_DefaultValue

BEmap_DefaultValue
Default value of BE_MAP (UCVO)

See BEmap_DefaultValue .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
BUBBLE_DoTheManagement

BUBBLE_DoTheManagement
(chamberwise) switch regarding bubble analysis (UCVO)

See BUBBLE_DoTheManagement .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -
BUBBLE_EnforceAveragePressure

BUBBLE_EnforceAveragePressure
fix average pressure for all bubbles (UCVQO)

See BUBBLE_EnforceAveragePressure .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
BUBBLE_pOff

BUBBLE_pOffset

define offset pressure for bubble pressure-on-volume analysis (UCVO)

See BUBBLE_pOffset .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

COEFF_dt_Darcy
COEFF_dt_Darcy

define the virtual time step size for applications with Darcy (Brinkman) term (UCVO)

See COEFF_dt Darcy .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax elements -
COEFF_dt_SurfaceTension_A

396

COEFF _dt_SurfaceTension A
time step criterion for surface tension, parameter A (UCVO)

See COEFF_dt_SurfaceTension_A .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

EFF_dt SurfaceTension B
COEFF _dt_SurfaceTension B

time step criterion for surface tension, parameter B (UCVO)

See COEFF_dt_SurfaceTension_B.

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax elements -

COEFF_dt_SurfaceTension_C

COEFF_dt_SurfaceTension_C

(experimental) time step criterion for surface tension, parameter C (UCVO)

See COEFF_dt_SurfaceTension_C .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
COEFF_dt
COEFF_dt

factor for computation of time step size (UCVO)

See COEFF _dt.

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
COEFF_dt_caoll
COEFF_dt_coll

time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCVO)

See COEFF_dt_coll .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

COEFF_dt_d30

COEFF_dt_d30
time step criterion depending on %ind_d30% (DROPLETPHASE only) (UCVO)

See COEFF_dt_d30.

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

COEFF_dt_free
COEFF_dt_free

(experimental) factor for exaggerated movement of the free surface (UCVO)

397

See COEFF dt free.

MESHFREE - InputFiles - USER_common_variables -

COEFF_dt_virt
COEFF_dt_virt

(chamberwise) scaling factor for the virtual time step size (UCVO)

See COEFF_dt_virt .

MESHFREE - InputFiles - USER_common_ variables -
COEFF_mue
COEFF_mue

scaling factor for numerical viscosity (UCVO)

See COEFF_mue.

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

__overview_of syntax_elements -

MP_CosEdgeAng|
COMP_CosEdgeAngle

(chamberwise) parameter to identify edges in geometry (UCVO)

See COMP_CosEdgeAngle .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

COMP_DoOrganizeOnlyAfterHowManyCycles

COMP_DoOrganizeOnlyAfterHowManyCycles

do the point cloud organization only after how many time cycles (UCVO)

See COMP_DoOrganizeOnlyAfterHowManyCycles .

MESHFREE - InputFiles - USER_common_variables -

COMP_DropletphaseSubcycles

COMP_DropletphaseSubcycles
switch for subcycling in DROPLETPHASE (UCVO)

See COMP_DropletphaseSubcycles .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

COMP_ DropletphaseWithDisturbance

COMP_DropletphaseWithDisturbance
disturbance for DROPLETPHASE (UCVO)

See COMP_DropletphaseWithDisturbance .

MESHFREE - InputFiles - USER_common_variables -

COMP_RemeshBoundary

__overview_of syntax_elements -

398

COMP_RemeshBoundary
parameter to control remeshing of IGES-files (UCVQ)

See COMP_RemeshBoundary .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

COMP_TypeSmooth_Eta

COMP_TypeSmooth_Eta
type for smoothing of viscosity (UCVO)

See COMP_TypeSmooth_Eta .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

COMP_TypeSmooth_Rho

COMP_TypeSmooth_Rho
type for smoothing of density (UCVO)

See COMP_TypeSmooth_Rho .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

COMP_dt_indep
COMP_dt_indep

parameter to switch on independent time stepping for two-phase LIQUID simulations with v-- and vp- (UCVO)

See COMP_dt_indep .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

COMP_facSmooth_Eta

COMP_facSmooth_Eta

parameter for weight kernel definition for smoothing of viscosity (UCVO)

See COMP_facSmooth_Eta .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

COMP_nbSmooth_Eta

COMP_nbSmooth_Eta
number of smoothing cycles for effective and total viscosity (UCVO)

See COMP_nbSmooth_Eta .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

CONTROL _ StopAfterReadingGeometry

CONTROL_StopAfterReadingGeometry
stops the MESHFREE program after geometry is read (UCVO)

399

See CONTROL_StopAfterReadingGeometry .

MESHFREE - InputFiles - USER_common_variables -

CouplingBFT_TypeOfOfOtherSimulation
CouplingBFT_TypeOfOfOtherSimulation

give the type of the other simulation

See CouplingBFT_TypeOfOtherSimulation .

MESHFREE - InputFiles - USER_common_variables -

lingBFT_WorkingDir ryOfOtherSimulation

CouplingBFT_WorkingDirectoryOfOtherSimulation

__overview_of syntax_elements -

__overview_of syntax_elements -

working directory of another simulation to which couling has to be performed

See CouplingBFT_WorkingDirectoryOfOtherSimulation .

MESHFREE - InputFiles -

USER_common_variables -

__overview_of syntax_elements -

DELT_dt AddCond
DELT dt AddCond

defines a custom time step criterion

See DELT_dt_AddCond .

MESHFREE - InputFiles -

USER_common_variables -

__overview_of syntax_elements -

DELT_dt
DELT_dt

maximum allowed time step size

See DELT dt.

MESHFREE - InputFiles -

USER_common_variables -

__overview_of syntax_elements -

DELT dt_start

DELT_dt_start
time step size at the start of a simulation

See DELT dt start.

MESHFREE - InputFiles -
DELT_dt_variable

DELT_dt_variable
let MESHFREE control the time step size

See DELT_dt variable .

MESHFREE - InputFiles - USER_common_variables -

DIFFOP_ConsistentGradient

USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

400

DIFFOP_ConsistentGradient
consistent gradient in the sense d/dn = n*grad (UCVQ)

See DIFFOP_ConsistentGradient .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
DIFFOP_Neumann_ExcludeBND

DIFFOP_Neumann_ExcludeBND

(chamberwise) parameter to exclude boundary points from the neighborhood for the computation of the Neumann
operators (UCVO)

See DIFFOP_Neumann_ExcludeBND .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -
DIFFOP_WeightReductionInCaseOfDeactivation

DIFFOP_WeightReductioninCaseOfDeactivation
(chamberwise) parameter to reduce the weight of a neighbor point in case of deactivation (UCVO)

See DIFFOP_WeightReductionInCaseOfDeactivation .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
DIFFOP_kernel_Gradient

DIFFOP_kernel_Gradient
(chamberwise) factor for the weight kernel for the least squares approximation stencils for gradients (UCVO)

See DIFFOP_kernel_Gradient .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
DIFFOP_kernel_Laplace

DIFFOP_kernel_Laplace

(chamberwise) factor for the weight kernel for the least squares approximation stencils for the Laplacian (UCVO)

See DIFFOP_kernel_Laplace .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
DIFFOP_kernel_Neumann

DIFFOP_kernel_Neumann
(chamberwise) factor for the weight kernel for the least squares approximation stencils for Neumann operators (UCVQO)

See DIFFOP_kernel_Neumann .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
DIFFOP_Kkernel_Transport

DIFFOP_kernel_Transport
(chamberwise) factor for the weight kernel for the least squares approximation stencils for the transport operators (UCVO)

401

See DIFFOP_kernel_Transport .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

DIFFOP_laplace

DIFFOP_laplace
type of least squares approximation stencils for the Laplacian (UCVQO)

See DIFFOP_laplace .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

DP_UseOnlyRepulsiveContactForce

DP_UseOnlyRepulsiveContactForce
switch regarding attractive forces in spring-damper model (UCVO)

See DP_UseOnlyRepulsiveContactForce .

MESHFREE - InputFiles - USER_common_variables -
DarcyBasisVelocity

DarcyBasisVelocity
Define velocity of porous material

See DarcyBasisVelocity

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax elements -

__overview_of syntax elements -

Dar nstan

DarcyConstant
Define coupling parameter for porous material

See DarcyConstant

MESHFREE - InputFiles - USER_common_variables -
FLIQUID_ConsistentPressure_Version

FLIQUID ConsistentPressure Version
version how to compute the consistent pressure (UCVO)

See FLIQUID_ConsistentPressure_Version .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

FOFTLIQUID_AdditionalCorrectionLoops

FOFTLIQUID_AdditionalCorrectionLoops
additional velocity correction loops (UCVO)

See FOFTLIQUID_AdditionalCorrectionLoops .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

ForchheimerConstant

402

ForchheimerConstant
Define coupling parameter for porous material

See ForchheimerConstant

MESHFREE - InputFiles - USER_common_variables -

IGES Accuracy

IGES_Accuracy
relative accuracy for consistency checks of IGES-faces (UCVO)

See IGES_Accuracy .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements

IGES HealCorruptF

IGES_HealCorruptFaces

allow a certain depth of healing triangulation of IGES faces by refinement (UCVO)

See IGES_HealCorruptFaces .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements

KOP
KOP

Model and Solver selection

See KindOfProblem .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements

KindOfProblem

KindOfProblem
Model and Solver selection

See KindOfProblem .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements

LINEQN_scaling

LINEQN_scaling
choose the way how to scale/normalize the linear systems (UCVO)

See LINEQN_scaling .

MESHFREE - InputFiles - USER_common_variables -

LINEQN_solver_ScalarSystems

LINEQN_solver_ScalarSystems

__overview_of syntax elements -

linear solver to be used for the scalar systems like pressure, temperature, etc. (UCVO)

See LINEQN_solver_ScalarSystems .

403

__overview_of syntax_elements -

USER_common_variables -

MESHFREE - InputFiles -
LINEQN_solver

LINEQN_solver
linear solver to be used for the coupled vp- or v-- system (UCVQO)

See LINEQN_solver .

MESHFREE - InputFiles -
MEMORIZE_R ReadFl

MEMORIZE_ResetReadFlag
reset frequency for MEMORIZE_Read flag (UCVO)

See MEMORIZE_ResetReadFlag .

MESHFREE - InputFiles - USER_common_variables -
PHASE_distinction

PHASE_distinction
invoke detection of interface connections (UCVO)

See PHASE_ distinction .

USER_common variables - __overview of syntax elements -

__overview_of syntax_elements -

__overview_of syntax_elements -

MESHFREE - InputFiles - USER_common_variables -
PointDsplMethod

PointDsplMethod
(experimental) Choice among different ways to move points in Lagrangian framework (UCVO)

See PointDsplMethod .

__overview_of syntax_elements -

MESHFREE - InputFiles - USER_common_variables -
RIGIDBODY_ExternalForces

RIGIDBODY_ExternalForces
pressure to apply on rigid bodies; if not given, hydrostatic and dynamic pressure are applied

RIGIDBODY_ExternalForces (i) = (X, ¥, z, Fx, Fy, Fz)

default: RIGIDBODY_ExternalForces (i) = (0,0,0, 0,0,0)

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

RIGIDBODY_pressureToApplyOnBody

RIGIDBODY_pressureToApplyOnBody
pressure to apply on rigid bodies; if not given, hydrostatic and dynamic pressure are applied

RIGIDBODY _pressureToApplyOnBody ($MOVEitem$) = ([equation for pHydrostatic], [equation for pDynamic])

404

default: ([Y %Iind_p% 1, [Y %ind_p_dyn% 1)

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements
RepairGeometry

RepairGeometry
enforce clustering of geometry nodes upon read-in (UCVQO)

See RepairGeometry .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

RepresentativeMass_iData

RepresentativeMass_iData
(chamberwise) parameter for the RepresentativeMass algorithm (UCVO)

See RepresentativeMass_iData .

MESHFREE - InputFiles - USER_common_variables - __overview_ of syntax_elements
R r iz

RestartStepSize
define after how many time cycles a restart file has to be generated

See RestartStepSize .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements
Restart

Restart
launch MESHFREE on the basis of a restart file

See LaunchRestart .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements
SAMG_Setupreuse

SAMG_Setupreuse
accelerates SAMG solver for quasi-stationary point clouds (UCVQ)

See SAMG_Setupreuse .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements
SAVE_CoordinateSystem

SAVE_CoordinateSystem
saving relative to specified coordinate system (movement)

See SAVE_CoordinateSystem .
See SAVE_CoordinateSystem .

405

MESHFREE - InputFiles - USER_common_variables -

SAVE_PrecisionTimestepFile

SAVE_PrecisionTimestepFile

__overview_of syntax_elements -

choose the precision (number of digits) for values in the timestep file (UCVO)

See SAVE_PrecisionTimestepFile .

MESHFREE - InputFiles - USER_common_variables -

SAVE_atEndOfTimestep
SAVE_atEndOfTimestep

__overview_of syntax_elements -

choose to save data for visualization at the end of time steps instead of at the start (UCVO)

See SAVE_atEndOfTimestep .

MESHFREE - InputFiles - USER_common_variables -

SAVE_choose_meth
SAVE_choose meth

save computational results in different formats

See SAVE_choose_meth .
See SAVE_choose_meth .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

SAVE_file
SAVE_file

file name for the results

See SAVE file.
See SAVE file.

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

SAVE first
SAVE_first

control first save

See SAVE _first .
See SAVE _first .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

SAVE_format
SAVE_format

format to save simulation data

See SAVE_format .
See SAVE_format .

406

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

SAVE_format_skip

SAVE_format_skip
skipping cycle for SAVE_format

See SAVE_format_skip .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

SAVE_interval
SAVE interval

control saving frequency

See SAVE interval .
See SAVE interval .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

SAVE _intervall

SAVE_intervall
control saving frequency

See SAVE interval .
See SAVE interval .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

SAVE_path
SAVE_path

absolute or relative path for the simulation results

See SAVE_path .
See SAVE_path .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

SCAN_ClustersOfConnectivity

SCAN_ClustersOfConnectivity
(chamberwise) switch on cluster checking of MESHFREE point cloud by neighborhood connectivity (UCVO)

See SCAN_ClustersOfConnectivity .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

STRESSTENSOR_Variante Factor

STRESSTENSOR_Variante_Factor
factor in stress tensor time integration wrt the shear modulus (UCVO)

See STRESSTENSOR_Variante_Factor .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

407

STRESSTENSOR_Variante

STRESSTENSOR Variante

version of stress tensor time integration (UCVO)

See STRESSTENSOR_Variante .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

Tend
Tend

maximum final time of simulation

See Tend .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

Timelntegration_N_final

Timelntegration_N_final
maximum number of timesteps

See Timelntegration_N_final .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
Tstart
Tstart

initial time of simulation

See Tstart .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

USER_h_funct

USER_h_funct
choose either constant, locally variable, or adaptive smoothing length

See USER_h_funct.

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
USER_h_max
USER_h_max

maximum allowed smoothing length

See USER h _max.

MESHFREE - InputFiles - USER_common_variables - __ overview of syntax_elements -

USER_h_min
USER_h_min

minimum allowed smoothing length

408

See USER _h _min.

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
V00_SmoothDivV

V00_SmoothDivV
Chorin projection: smooth the local values of div(v) before going into the correction pressure computation (UCVO)

See VOO_SmoothDivV .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
VOLUME_ correction_FreeSurface

VOLUME_correction_FreeSurface
(chamberwise) parameter to correct volume by tiny global lifting of the free surface (UCVQO)

See VOLUME_ correction_FreeSurface .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
VOLUME_ correction

VOLUME_correction
(chamberwise) parameter to correct volume by GLOBALLY adjusting the divergence of velocity term (UCVQO)

See VOLUME_ correction .

MESHFREE - InputFiles - USER_common_variables - __ overview of syntax_elements -
VOLUME_ correction_local

VOLUME_correction_local

(chamberwise) parameter to correct volume by LOCALLY adjusting the divergence of velocity term due to representative
mass balance (UCVO)

See VOLUME_ correction_local .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
VPO_VelocityCorrection

VPO0_VelocityCorrection
(chamberwise) switch to compute free surfaces (UCVO)

See VPO_VelocityCorrection .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
append{
append{

append the INTEGRATION data to an existing .timestep-file of the same structure

See AppendDataToExistingFiles

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

409

begin_alias{

begin_alias{

beginning alias definition

See ALIAS .

List of members:
ACTIVE
BC_PASSON

BC
BOUNDARYFILLING
CHAMBER

COORDTRANS

IDENT_PASSON

IDENT
IGNORE
LAYER

MAT

METAPLANE

MOVE_PASSON

MOVE
POSTPROCESS

REV_ORIENT

SMOOTH_LENGTH__Uc

V_
SMOOTH_N
SYMMETRYFACE

TOUCH

MESHFREE - InputFiles - USER_common_variables -
ACTIVE

begin_alias{ -
ACTIVE

define the activation behavior of the boundary elements of this part

for deactivated/disappearing boundary elements: give BC-flag to released MESHFREE points
define flag for boundary conditions

possibility to request reduced filling behavior for MESHFREE points for parts of the boundary
define the chamber index for the geometry entities

define coordinate transformation to mathematically transform long thin geometries into short
thick ones

for deactivated/disappearing boundary elements: give IDENT-information to released
MESHFREE points

how to handle the geometry part during point cloud organization
ignore this geometry item upon reading from geometry file
define layer index

define the material flag to be used, when the geometry part fills new points(mostly for initial
filling)

define a cutting plane for MESHFREE points

for deactivated/disappearing boundary elements: give MOVE-flag to released MESHFREE
points

provide a flag for the definition of boundary movement
define flag for postprocessing/integration
flip around orientation of boundary parts upon read-in of geometry files

define flag for smoothing length definition

invoke smoothing of the boundary
trigger the geometry part as symmetryface which changes the way of distance computation

define the wetting/activation behavior of MESHFREE points along the given boundary part

__overview_of syntax elements -

define the activation behavior of the boundary elements of this part

410

See ACTIVE .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
begin_alias{ - BC
BC

define flag for boundary conditions

See BC .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
begin_alias{ - BC_PASSON

BC PASSON

for deactivated/disappearing boundary elements: give BC-flag to released MESHFREE points

See BC_PASSON .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
begin_alias{ - BOUNDARYFILLING

BOUNDARYFILLING
possibility to request reduced filling behavior for MESHFREE points for parts of the boundary

See BOUNDARYFILLING .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax elements -

begin_alias{ - CHAMBER
CHAMBER

define the chamber index for the geometry entities

See CHAMBER .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_alias{ - COORDTRANS
COORDTRANS

define coordinate transformation to mathematically transform long thin geometries into short thick ones

See COORDTRANS .

MESHFREE - InputFiles - USER _common_variables - __overview of syntax _elements -

begin_alias{ - IDENT
IDENT

how to handle the geometry part during point cloud organization

See IDENT .
MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

begin_alias{ - IDENT_PASSON

411

IDENT_PASSON

for deactivated/disappearing boundary elements: give IDENT-information to released MESHFREE points

See IDENT_PASSON .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax elements -

begin_alias{ - IGNORE
IGNORE

ignore this geometry item upon reading from geometry file

See IGNORE .

MESHFREE - InputFiles - USER_common_variables -

begin_alias{ - LAYER
LAYER

define layer index

See LAYER.

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

begin_alias{ - MAT
MAT

define the material flag to be used, when the geometry part fills new points(mostly for initial filling)

See MAT .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_alias{ - METAPLANE

METAPLANE
define a cutting plane for MESHFREE points

See METAPLANE .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_alias{ - MOVE
MOVE

provide a flag for the definition of boundary movement

See MOVE .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_alias{ - MOVE_PASSON
MOVE_PASSON

for deactivated/disappearing boundary elements: give MOVE-flag to released MESHFREE points

412

See MOVE_PASSON .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_alias{ - POSTPROCESS
POSTPROCESS

define flag for postprocessing/integration

See MOVE .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
begin_alias{ - REV_ORIENT

REV_ORIENT

flip around orientation of boundary parts upon read-in of geometry files

See REV_ORIENT .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -
begin_alias{ - SMOOTH LENGTH Ucv_ _

SMOOTH_LENGTH__Ucv__

define flag for smoothing length definition

See SMOOTH_LENGTH .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax elements -

begin_alias{ - SMOOTH_N
SMOOTH_N

invoke smoothing of the boundary

See SMOOTH_N'.

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_alias{ - SYMMETRYFACE
SYMMETRYFACE

trigger the geometry part as symmetryface which changes the way of distance computation

See SYMMETRYFACE .

MESHFREE - InputFiles - USER _common_variables - __overview of syntax _elements -

begin_alias{ - TOUCH

TOUCH
define the wetting/activation behavior of MESHFREE points along the given boundary part

See TOUCH .
MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

begin_boundary_elements

413

begin_boundary_elements{

beginning boundary elements definition

See BoundaryElements .

List of members:
include{
BND_cube
BND_cylinder
BND_line
BND_node
BND_plane
BND_point
BND_quad
BND_tria
BND_triabN
include_CCC_curves{
manipulate{
deletef

BNDpoints_ExtractFromNodes{

definition of a geometry file to be read by MESHFREE

create an independent rectangular cuboid (box)

create a cylinder

create an independent line

create an independent node for use in other boundary entity definitions

create an independent point

create an independent quadrilateral

create an independent triangle

create an independent 6-node triangle

define the geometry file containing cutting curves for clustering

manipulate (move, rotate, ...) the geometry belonging to an alias-group

delete all the geometry belonging to a given alias-group

create BND_points from existing geometry nodes

MESHFREE - InputFiles - USER_common_variables - __ overview of syntax_elements -
in_boundary elemen BND_cube
BND cube

create an independent rectangular cuboid (box)

See BND_cube .

MESHFREE -

InputFiles -

USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ -

BND_cylinder

BND_cylinder

create a cylinder

See BND_cylinder .

MESHFREE -

begin_boundary elements{ -

InputFiles -

USER_common_variables -

__overview_of syntax_elements -

BND_line

BND_line
create an independent line

414

See BND line .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ - BND_node

BND_node

create an independent node for use in other boundary entity definitions

See BND _node .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ - BND_plane
BND_plane

See BND_plane .

MESHFREE - InputFiles - USER_common_variables -

begin_boundary elements{ - BND_point

BND_point
create an independent point

See BND_point .

__overview_of syntax elements -

__overview_of syntax elements -

MESHFREE - InputFiles - USER_common_variables -

begin_boundary elements{ - BND_quad
BND_quad

create an independent quadrilateral

See BND_quad .

MESHFREE - InputFiles - USER_common_variables -

begin_boundary_elements{ - BND_tria

BND_tria

create an independent triangle

See BND tria.

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

__overview_of syntax_elements -

begin_boundary elements{ - BND_triabN

BND_tria6N

create an independent 6-node triangle

See BND_tria6bN .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ - BNDpoints ExtractFromNodes{

415

BNDpoints_ExtractFromNodes{
create BND_points from existing geometry nodes

See BNDpoints_ExtractFromNodes{ .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ - delete{

deletef
delete all the geometry belonging to a given alias-group

See delete] .

MESHFREE - InputFiles - USER_common_variables -

__overview_of syntax_elements -

begin_boundary elements{ - include CCC_curves{

include_CCC_curves{
define the geometry file containing cutting curves for clustering

See include_CCC_curves .

MESHFREE - InputFiles - USER_common_variables -

begin_boundary elements{ - include{

include{
definition of a geometry file to be read by MESHFREE

See includef .

__overview_of syntax_elements -

416

List of members:

applyAlias{ Rename BoundaryElements with the given alias name

coarsenGeometry{ coarsen the triangulation of the specified part of the geometry

duplicate{ Duplicate part of the geometry and apply a new alias

layerByCluster assign the layer-property of a geometryical entity, possibly overrides the user given

value form the ALIAS block

mirror{ generalized mirroring across a plane

offset{ shift the given geometry by a vector

removeCluster{ removes cluster(s) of the current geometry subset due to given conditions
removelsolatedCluster{ remove clusters who have less than a given number of single geometry elements

(triangles, quads, etc.)

removeQuterShell{ for shell geometry given by two closed surfaces, remove outer surface
removeTinyClusters{ remove tiny parts from a geometrical entity

reorientation{ reorientation (inside/outside) of parts of the geometry

revOrient{ Invert orientation of boundary elements

rotate{ rotate the given geometry about a point with a rotation axis and angle

scale{ scale the given geometry about the origin

symmetryfaceByCluster{ automatic distribution of SYMMETRYFACE-flags to geometry components
thickenabs{ move a given part of the geometry by an absolute value of distance

thickenexp(move the given part of the boundary by a relative value, correlated to the locally given

smoothing length

turn_6NodeTriangles_into_3Node Turn 6-node triangles into 3-node triangles
Triangles{

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
begin_boundary elements{ - include{ - applyAlias{

applyAlias{

Rename BoundaryElements with the given alias name

See applyAlias{ .

MESHFREE - InputFiles - USER _common_variables - __overview of syntax _elements -
begin_boundary elements{ - include{ - coarsenGeometry{
coarsenGeometry{

coarsen the triangulation of the specified part of the geometry

See coarsenGeometry{ .

417

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary elements{ - include{ - duplicate{

duplicate{
Duplicate part of the geometry and apply a new alias

See duplicate{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_boundary elements{ - include{ - layerByCluster

layerByCluster
assign the layer-property of a geometryical entity, possibly overrides the user given value form the ALIAS block

See layerByCluster{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax elements -

begin_boundary elements{ - include{ - mirror{

mirror{

generalized mirroring across a plane

See mirror{ .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_boundary elements{ - include{ - offset{

offset{
shift the given geometry by a vector

See offset{ .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_boundary_elements{ - include{ - removeCluster{

removeCluster{
removes cluster(s) of the current geomeltry subset due to given conditions

See removeClusterf{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary_elements{ - include{ - removelsolatedCluster{

removelsolatedCluster{
remove clusters who have less than a given number of single geometry elements (triangles, quads, etc.)

See removelsolatedClusters{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary elements{ - include{ - removeOuterShell{

removeOuterShell{

418

for shell geometry given by two closed surfaces, remove outer surface

See removeQuterShell{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary_elements{ - include{ - removeTinyClusters{

removeTinyClusters{
remove tiny parts from a geometrical entity

See removeTinyClusters{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_boundary_elements{ - include{ - reorientation{

reorientation{
reorientation (inside/outside) of parts of the geometry

See reorientation{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_boundary elements{ - include{ - revOrient{

revOrient{
Invert orientation of boundary elements

See revOrient{ .

MESHFREE - InputFiles - USER_common_variables - __ overview of syntax_elements -

begin_boundary elements{ - include{ - rotate{

rotate{
rotate the given geometry about a point with a rotation axis and angle

See rotatef{ .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_boundary elements{ - include{ - scalg{

scalef
scale the given geometry about the origin

See scalef .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary_elements{ - include{ - symmetryfaceByCluster{

symmetryfaceByCluster{
automatic distribution of SYMMETRYFACE-flags to geometry components

See symmetryfaceByCluster{ .

419

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_boundary _elements{ - include{ - thickenabs{

thickenabs{
move a given part of the geometry by an absolute value of distance

See thickenabs{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -

begin_boundary elements{ - include{ - thickenexp{

thickenexp{
move the given part of the boundary by a relative value, correlated to the locally given smoothing length

See thickenexp{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_boundary elements{ - include{ - turn 6NodeTriangles into 3NodeTriangles{

turn_6NodeTriangles_into_3NodeTriangles{
Turn 6-node triangles into 3-node triangles

See turn_6NodeTriangles_into_3NodeTriangles{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -

begin_boundary elements{ - manipulate{

manipulate{
manipulate (move, rotate, ...) the geometry belonging to an alias-group

See manipulate{ .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax _elements -
in_construct_atR r

begin_construct_atRestart{
beginning construct variables definition (only) at restart

See ConstructClause .

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_construct{

begin_construct{
beginning construct variables definition

See ConstructClause .

List of members:

CONSTRUCT mathematical construction of scalars and vectors

420

MESHFREE - InputFiles - USER_common_variables - __overview_of syntax_elements -

begin_construct{ - CONSTRUCT
CONSTRUCT

mathematical construction of scalars and vectors

See ConstructClause .

MESHFREE - InputFiles - USER_common_variables - __overview of syntax_elements -
begin_curve{

begin_curve{
beginning curve definition

See Curves .

List of members:

depvar_default{ defines the index for the independent var